188
Views
3
CrossRef citations to date
0
Altmetric
Articles

Colorimetric and rapid determination of Cr(III) ions in water samples using AuNPs modified with 11-mercaptoundecyl phosphonic acid: spectroscopic characterization and reaction mechanism

, , , , ORCID Icon, , ORCID Icon & ORCID Icon show all
Pages 275-285 | Received 12 Feb 2018, Accepted 16 Jul 2018, Published online: 21 Dec 2018

References

  • Tchounwou, P.B.; Yedjou, C.G.; Patlolla, A.K.; Sutton, D.J.; Molecular, Clinical and Environmental Toxicology. Heavy Metal Toxicity and the Environment, Experientia Supplementum; Springer: Basel, 2012.
  • Bathla, S.; Jain T. Heavy Metals Toxicity. Int. J. Health Sci. Res. 2016, 6, 361–368.
  • Modi, R. P.; Mehta, V. N.; Kailasa, S. K. Bifunctionalization of Silver Nanoparticles with 6-mercaptonicotinic Acid and Melamine for Simultaneous Colorimetric Sensing of Cr3+ and Ba2+ ions. Sens. Actuators, B 2014, 195, 562–571.
  • Elavarasi, M.; Paul, M. L.; Rajeshwari, A.; Chandrasekaran, N.; Mandalb, A. B.; Mukherjee, A. Studies on Fluorescence Determination of Nanomolar Cr(III) in Aqueous Solutions using Unmodified Silver Nanoparticles. Anal. Methods 2016, 4, 3407–3412.
  • Dong, C.; Wu, G.; Wang, Z.; Ren, W.; Zhang, Y.; Shen, Z.; Li, Y.; Wu, A. Selective Colorimetric Detection of Cr(III) and Cr(VI) using Gallic Acid Capped Gold Nanoparticles. Dalton Trans. 2016, 45, 8347–8354.
  • Xin, J.; Miao, L.; Chen, S.; Wu, A. Colorimetric Detection of Cr3+ using Tripolyphosphate Modified Gold Nanoparticles in Aqueous Solutions. Anal. Methods 2012, 4, 1259–1264.
  • Saracoglu, S.; Soylak, M.; Elci, L. On-line Solid Phase Extraction System for Chromium Determination in Water Samples by Flow Injection-Flame Atomic Absorption Spectrometry. Anal. Lett. 2002, 35, 1519–1530.
  • Cefalu, W. T.; Hu, F. B. Role of Chromium in Human Health and in Diabetes. Diabetes Care 2004, 27, 2741–2751.
  • Anderson, R. A. Chromium, glucose intolerance and diabetes. J. Am. Coll. Nutr. 1998, 17, 548–555.
  • Chen, Y.; Lee, I.; Sung, Y.; Wu, S. K. Triazole Functionalized Gold Nanoparticles for Colorimetric Cr3+ Sensing. Sens. Actuators, B. 2013, 188, 354–359.
  • Martin, S.; Griswold, W. Human Health Effects of Heavy Metals. Environ. Sci. Technol. Lett. 2009, 5, 1–6.
  • Hughes, S.; Dasary, S.; Singh, A.; Glenn, Z.; Jamison, H.; Ray, P.; Yu, H. Sensitive and Selective Detection of Trivalent Chromium using Hyper Rayleigh Scattering with 5,5′-dithio-bis-(2-nitrobenzoic acid)-modified Gold Nanoparticles. Sens. Actuators, B. 2003, 178, 514–519.
  • Wang, Z.; Fanga, D. M.; Li, Q.; Zhang, L. X.; Qian, R.; Zhu, Y.; Qu, H. Y.; Du, Y. P. Modified Mesoporous Silica Materials for On-line Separation and Preconcentration of Hexavalent Chromium Using a Microcolumn Coupled with Flame Atomic Absorption Spectrometry. Anal. Chim. Acta. 2012, 725, 81–86.
  • (a)Sun, Z.; Liang, P. Determination of Cr(III) and Total Chromium in Water Samples by Cloud Point Extraction and Flame Atomic Absorption Spectrometry. Microchim. Acta. 2008, 162, 121–125. (b) Divrikli, U.; Soylak, M.; Elci, L. Determination of Total Chromium by Flame Atomic Absorption Spectrometry after Coprecipitation by Cerium (IV) Hydroxide. Environ Monit Assess. 2008, 135, 167–172.
  • Séby, F.; Charles, S.; Gagean, M.; Garraud, H.; Donard, O. F. X. Chromium Speciation by Hyphenation of High-Performance Liquid Chromatography to Inductively Coupled Plasma-Mass Spectrometry-Study of the Influence of Interfering ions. J. Anal. At. Spectrom. 2003, 18, 1386–1390.
  • Wang, H. J.; Du, X. M.; Wang, M.; Wang, T. C.; Ou-Yang, H.; Wang, B.; Zhu, M. T.; Wang, Y.; Jia, G.; Feng, W. Y. Using ion-pair Reversed-Phase HPLC ICP-MS to Simultaneously Determine Cr(III) and Cr(VI) in Urine of Chromate Workers. Talanta 2010, 81, 1856–1860.
  • Yuan, D.; Fu, D.; Wang, R.; Yuan, J. Rapid Determination of Chromium(VI) in Electroplating Waste Water by use of a Spectrophotometric Flow Injection System, Spectrochim. Spectrochim. Acta Part A. 2008, 71, 276–279.
  • Li, Z.; Zhang, J.; Hu, H.; Wan, R.; Yao, Y. Highly Sensitive and Portable Fluorescence Detection System for Cr3+ Optik 2015, 126, 2087–2089.
  • Ganjali, M. R.; Norouzi, P.; Faridbod, F.; Ghorbani, M.; Adib, M. Highly Selective and Sensitive Chromium(III) Membrane Sensor Base on a New Tridentate Schiffs Base Anal. Chim. Acta 2006, 569, 35–41.
  • Zamani, H. A.; Rajabzadeh, G.; Masrornia, M.; Dejbord, A.; Ganjali, M. R.; Seifi, M. Determination of Cr3 ions in Biological and Environmental Samples by a Chromium(III) Membrane Sensor Based on 5-amino-1-phenyl-1H-pyrazole-4-carboxamide. Desalination 2009, 249, 560–565.
  • Zhao, L.; Jin Y., Yan Z., Liu Y., Zhu H. Novel, Highly Selective Detection of Cr(III) in Aqueous Solution Based on a Gold Nanoparticles Colorimetric Assay and its Application for Determining Cr(VI). Anal. Chim. Acta 2012, 731, 75–81.
  • Wegner, K. D.; Hildebrandt, N. Quantum Dots: Bright and Versatile in vitro and in vivo Fluorescence Imaging Biosensors. Chem. Soc. Rev. 2015, 44, 4792–4834.
  • Wu, P.; Hou, X.; Xu, J. J.; Chen, H. -Y. Ratiometric Fluorescence, Electrochemiluminescence and Photoelectrochemical Chemo/Biosensing Based on Semiconductor Quantum Dots. Nanoscale 2016, 8, 8427–8442.
  • Otanicar, T. P.; DeJarnette, D.; Hewakuruppu, Y.; Taylor, T. P. Filtering Light Nanoparticles: A Review of Optically Selective Particles and Applications. Adv. Opt. Photonics. 2016, 8, 541–585.
  • Willets K. A. Surface-Enhanced Raman Scattering (SERS) for Probing Internal Cellular Structure and Dynamics. Anal. Bioanal. Chem. 2009, 394, 85–94.
  • Jain P. K.; Lee K. S.; El-Sayed I. H.; El-Sayed M. A. Calculated Absorption and Scattering Properties of Gold Nanoparticles of Different Size, Shape, and Composition: Applications in Biological Imaging and Biomedicine. J. Phys. Chem. B 2006, 110, 7238–7248.
  • Abdulhalim I.; Sourob M.; Lakhtakia, A. Surface Plasmon Resonance for Biosensing: A Mini Review. Electromagnetics 2008, 28, 214–242.
  • Tiwari, P. M.; Vig, K.; Dennis, V. A.; Singh, S. R. Functionalized Gold Nanoparticles and Their Biomedical Applications. Nanomaterials 2011, 1, 31–63.
  • Annadhasan, M.; Muthukumarasamyvel, T.; Sankar Babu, V. R.; Rajendiran, N. Green Synthesized Silver and Gold Nanoparticles for Colorimetric Detection of Hg2+, Pb2+, and Mn2+ in Aqueous Medium ACS Sustainable Chem. Eng. 2014, 2, 887–896.
  • Morales-Narváez, E.; Golmohammadi, H.; Naghdi, T.; Yousefi, H.; Kostiv, U.; Horak, D.; Pourreza, N.; Merkoçi, A. Nanopaper as an Optical Sensing Platform. ACS Nano 2015, 9, 7296–7305.
  • De Oliveira, R. E. P.; Sjo¨din, N.; Fokine, M.; Margulis, W.; De Matosand, C. J. S.; Norin, L. X. Fabrication and Optical Characterization of Silica Optical Fibers Containing Gold Nanoparticles. ACS Appl. Mater. Interfaces 2015, 7, 370–375.
  • Yuan, Z.; Hu, C. C.; Chang, H. T.; Lu, C. Gold Nanoparticles as Sensitive Optical Probes. Analyst 2016, 141, 1611–1626.
  • Thanh, N. T. K.; Rosenzweig, Z. Development of an Aggregation-Based Immunoassay for Anti-Protein A Using Gold Nanoparticles. Anal. Chem. 2002, 74, 1624–1628.
  • Dykman, L.; Khlebtsov, N. Gold Nanoparticles in Biomedical Applications: Recent Advances and Perspectives. Chem. Soc. Rev. 2012, 41, 2256–2282.
  • Zhou, Y.; Dong, H.; Liu, L.; Li, M.; Xiao, K.; Xu, M. Selective and Sensitive Colorimetric Sensor of Mercury (II) Based on Gold Nanoparticles and 4-mercaptophenylboronic Acid. Sens. Actuators, B 2014, 196, 106–111.
  • Keshvari, F.; Bahram, M.; Farhadi, K. A Selective, Sensitive and Label-Free Visual Assay of Fructose using Anti-Aggregation of Gold Nanoparticles as a Colorimetric Probe. Chin. J. Chem. 2016, 27, 847–851.
  • Lou, T.; Chen, Z.; Wang, Y.; Chen, L. Blue-to-Red Colorimetric Sensing Strategy for Hg2+ and Ag+ via Redox-Regulated Surface Chemistry of Gold Nanoparticles. ACS Appl. Mater. Interfaces 2011, 3, 1568–1573.
  • Chen, L.; Lou, T.; Yu, C.; Kang, Q.; Chen, L. N-1-(2-Mercaptoethyl)thymine Modification of Gold Nanoparticles: A Highly Selective and Sensitive Colorimetric Chemosensor for Hg2+. Analyst 2011, 136, 4770–4773.
  • Rosi, N. L.; Giljohann, D. A.; Thaxton, C. S.; Lytton-Jean, A. K. R.; Su Han, M.; Mirkin, C. A. Oligonucleotide-Modified-Gold-Nanoparticles-for-Intracellular-Gene-Regulation. Science 2006, 312, 1027–1030.
  • Lee, J. S.; Han, M. S.; Mirkin, C. A. Colorimetric Detection of Mercuric Ion (Hg2+) in Aqueous Media using DNA-Functionalized Gold Nanoparticles. Angew. Chem. Int. Ed. 2007, 119, 4171–4174.
  • Yang, C.; Liu, L.; Zeng, T.; Yang, D.; Yao, Z.; Zhao, Y.; Wu, H. C. Highly Sensitive Simultaneous Detection of Lead(II) and Barium(II) with G-Quadruplex DNA in α-Hemolysin Nanopore. Anal. Chem. 2013, 85, 7302–7307.
  • Tsai, C. S.; Yu, T. B.; Chen, C. T. Gold nanoparticle-based competitive colorimetric assay for detection of protein–protein interactions. Chem. Commun. 2005, 427, 4273–4275.
  • Sun, Z.; Cui, Z.; Li, H. p-Amino benzenesulfonic acid functionalized gold nanopar-ticles: synthesis, colorimetric detection of carbaryl and mechanism study byzeta potential assays. Sens. Actuators B. 2013, 183, 297–302.
  • Sung, Y. M.; Wu, S. P. Colorimetric detection of Cd(II) ions based on di-(1H-pyrrol-2-ylmethanethione functionalized gold nanoparticles. Sens. Actuators, B 2014, 201, 86–91.
  • Wu, S. P.; Chen, Y. P.; Sung, Y. M. Colorimetric detection of Fe3+ions using pyrophosphate functionalized gold nanoparticles. Analyst 2011, 136, 1887–1891.
  • Lo, S. H.; Wu, M. C.; Venkatesan, P.; Wu, S. P. Colorimetric detection of chromium(III) using O-phospho-l-serine dithiocarbamic acid functionalized gold nanoparticles. Sens. Actuators, B 2015, 220, 772–778.
  • Ly, N. H.; Oh, C. H.; Joo, S. W. Submicromolar Cr(III) sensor with a complex of methionine using gold nanoparticles. Sens. Actuators, B 2015, 219, 276–282.
  • Shellaiah, M.; Simon, T.; Sun, K. W.; Ko, F. H. Simple bare gold nanoparticles for rapid colorimetric detection of Cr3+ ions in aqueous medium with real sample applications. Sens. Actuators B 2016, 226, 44–51.
  • Dang, Y. Q.; Li, H. W.; Wang, B.; Li, L.; Wu, Y. Selective Detection of Trace Cr3+ in Aqueous Solution by Using 5,5′-Dithiobis (2-Nitrobenzoic acid)-Modified Gold Nanoparticles. ACS Appl. Mater. Interfaces 2009, 1, 1533–1538.
  • Shahrivari, S.; Faridbod, F.; Reza Ganjali, M. Highly selective and sensitive colorimetric determination of Cr3+ ion by 4-amino-5-methyl-4H-1,2,4-triazole-3-thiol functionalized Au nanoparticles. Spectrochim. Acta Part. A 2017, 191, 189–194.
  • Weisbecker, C. S.; Merritti, M. V.; Whiteside, G. M. Molecular Self-Assembly of Aliphatic Thiols on Gold Colloids. Langmuir 1996, 12, 3763–3772.
  • Abad, J. M.; Mertens, S. F. L.; Pita, M.; Fernández, V. M.; Schiffrin, D. J. Functionalization of Thioctic Acid-Capped Gold Nanoparticles for Specific Immobilization of Histidine-Tagged Proteins. J. Am. Chem. Soc. 2005, 127, 5689–5694.
  • Pandya, A.; Joshi, K. V.; Sutariya, P. G.; Menon, S. K. Thioctic acid modified gold nanoparticles for highly specific and ultrasensitive detection of lanthanum in soil and water. Anal. Methods 2012, 4, 3102–3106.
  • Lee, S. H.; Bae, K. H.; Kim, S. H.; Lee, K. R.; Park, T. G. Amine-functionalized gold nanoparticles as non-cytotoxic and efficient intracellular siRNA delivery carriers. Int. J. Pharm. 2008, 364, 94–101.
  • Fiurasek, P.; Reven, L. Phosphonic and Sulfonic Acid-Functionalized Gold Nanoparticles: A Solid-State NMR Study. Langmuir 2007, 23, 2857–2866.
  • Zhang, F.; Zhou, Y.; Chen, Y.; Shi, Z.; Tang, Y.; Lu, T. Facile controlled preparation of phosphonic acid-functionalized gold nanoparticles. J. Colloid Interface Sci. 2010, 351, 421–426.
  • Daniel, M. C.; Didier, A. Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology. Chem. Rev. 2004, 104, 293–346.
  • Kimling, J.; Maier, M.; Okenve, B.; Kotaidis, V.; Ballot, H.; Plech, A. Plech, A. Turkevich Method for Gold Nanoparticle Synthesis Revisited. J. Phys. Chem. B 2006, 110, 15700–15707.
  • Daniel, M. C.; Surface Properties of Water-Soluble Glycine-Cysteamine-Protected Gold Clusters. Astruc, D.Chem. Rev. 2004, 104,293–346.
  • Aryal, S.; Remant, B. K. C.; Dharmaraj, N.; Bhattarai, N.; Kim, C. H.; Kim H. Y. Spectroscopic identification of S-Au interaction in cysteine capped gold nanoparticles. Spectrochim. Acta Part. A. 2006, 63, 160–163.
  • García Grajeda, B. A.; Soto Acosta, S. G.; Aguila, S. A.; Peinado Guevara, H.; Díaz-García, M. E.; Cruz Enríquez A.; Campos-Gaxiola, J. Selective and colorimetric detection of Ba2+ ions in aqueous solutions using 11-mercaptoundecylphosphonic acid functionalized gold nanoparticles. J. RSC. Adv. 2017, 7: 31611–31618.
  • Xue, D.; Wang, H.; Zhang, Y. Specific and sensitive colorimetric detection of Al3+ using 5-mercaptomethyltetrazole capped gold nanoparticles in aqueous solution. Talanta 2014, 119, 306–311.
  • Paniagua, S. A.; Hotchkiss, P. J.; Jones, S. C.; Marder, S. R.; Mudalige, A.; Marrikar, F. S.; Pemberton, J. E.; Armstrong, N. R. Phosphonic Acid Modification of Indium-Tin Oxide Electrodes: Combined XPS/UPS/Contact Angle Studies. J. Phys. Chem. 2008, 112, 7809–7817.
  • Socrates, G. Infrared and Raman Characteristic Group Frequencies: Tables and Charts; Middlesex: London, 2004.
  • Pretsch, E.; Bühlmann, P.; Badertscher, M. Structure Determination of Organic Compounds; Springer: New York, 2000; pp 245–312.
  • Mohan, J. C.; Praveen, G.; Chennazhi, K. P.; Jayakumar, R.; Nair, S. V. Functionalised gold nanoparticles for selective induction of in vitroapoptosis among human cancer cell lines. J. Exp.Nanosci. 2013, 8, 32–45.
  • Guo. Y.; Wang, Z.; Shao, H.; Jiang, X. Hydrothermal synthesis of highly fluorescent carbon nanoparticles from sodium citrate and their use for the detection of mercury ions. Carbon 2013, 52, 583–589.
  • Douglas, B.; McDaniel, D.; Alexander, J. Concepts and models of inorganic chemistry; J. Wiley and Sons: New York, U.S, 1994.
  • Su, D.; Yang, X.; Xia, Q.; Chai, F.; Wang, C. Colorimetric detection of Hg2+ using thioctic acid functionalized gold nanoparticles. RSC Adv. 2013, 3, 24618–24624.
  • Sung, Y. M.; Wu, S. P. Highly selective and sensitive colorimetric detection of Ag(I) using N-1-(2-mercaptoethyl)adenine functionalized gold nanoparticles, Sens. Actuators, B 2014, 197, 172–176.
  • Jin, W.; Huang, P.; Chen, Y.; Wu, F.; Wan, Y. Colorimetric detection of Cr3+ using gold nanoparticles. J. Nanopart. Res. 2015, 17, 1–10.
  • Yu, Y.; Hong, Y.; Wang, Y.; Sun, X.; Liu, B. Mercaptosuccinic acid modified gold nanoparticles as colorimetric sensor for fast detection and simultaneous identification of Cr3+. Sens. Actuators, B 2017, 239, 865–873.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.