280
Views
3
CrossRef citations to date
0
Altmetric
Articles

Effects of the carboxylic acid substituents on the photophysical and nonlinear optical properties of asymmetrical Zn(II) phthalocyanines–quantum dots conjugates

, &
Pages 296-307 | Received 11 Apr 2018, Accepted 16 Jul 2018, Published online: 31 Dec 2018

References

  • Wang, J.; Blau W.J. Numerical Approach for Optically Limited Pulse Transmission in Polymer-Phthalocyanine Composite Systems: Nonlinear optical propagation in a tandem structure comprising nonlinear absorption and scattering materials. Chem. Phys. Lett. 2008, 465, 265–271.
  • Boyd, R.W. Nonlinear Optics; Academic Press: San Diego, CA, 1992.
  • Clays, K.; Wostyn, K.; Persoons, A. Nonlinear Light Scattering by Organic Molecules and Material. A. Adv. Funct. Mater. 2002, 12, 557–563.
  • Aneeshkumar, B.; Gopinath, P.; Vallabhan, C.P.G.; Nampoori, V.P.N.; Radhakrishnan, P.; Thomas, J. Optical-limiting response of rare-earth metallo-phthalocyanine-doped copolymer matrix. J. Opt. Soc. Am. B. 2003, 20, 1486–1489.
  • Hongbing Z.; Wenzhe C.; Minquan W.; Chunlin Z.; Zhengchan. Optical limiting properties of peripherally modified palladium phthalocyanines doped silica gel glass. Chem. Phy. Lett 2004, 389 119–123.
  • Claessens C.G.; Blau, W.J.; Cook, M.; Hanack, M.; Nolte, R.J.M.; Torres, T.; Wöhrle, D. Phthalocyanines and phthalocyanine analogues: the quest for applicable optical properties. Molecular Mater. and Funct. Poly. 2001, 132, 3–11.
  • De Boni, L.; Piovesan, E.; Gaffo, L.; Mendonca, C.R. Resonant nonlinear absorption in Zn-phthalocyanines, J. Phys. Chem. A 2008, 112, 6803–6807.
  • McKeown, N.B. Phthalocyanine Materials–Synthesis, Structure and Function. Cambr. Univ. Press, 1998.
  • Medintz, I. L.; Uyeda, H. T.; Goldman, E. R; Mattoussi, H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater. 2005, 4, 435–446.
  • Chen, O.; Zhao, J.; Chauhan, V. P.; Cui, J.; Wong, C.; Harris, D. K.; Wei, H.; Han, H.S.; Fukumura, D.; Jain, R. K. Compact high-quality CdSe-CdS core-shell nanocrystals with narrow emission linewidths and suppressed blinking. Nat. Mater. 2013, 12, 445–451.
  • Adegoke, O.; Forbes, P. B. C. Challenges and advances in quantum dot fluorescent probes to detect reactive oxygen and nitrogen species, a review, Anal. Chim. Acta, 2015, 862, 1–13.
  • Nwaji, N.; Oluwole, D.O.; Mack J.; Louzada, M.; Khene, S.; Britton, J.; Nyokong, T. Improved nonlinear optical behaviour of ball type indium (III) phthalocyanine linked to glutathione capped nanoparticles. Dyes Pigm. 2017, 140, 417–430.
  • Britton, J.; Martynov, A.G.; Oluwole, D.O.; Gorbunova, Y.G.; Tsivadze, A.Y.; Nyokong, T. Improvement of nonlinear optical properties of phthalocyanine bearing diethyleneglycole chains: Influence of symmetry lowering vs. heavy atom effect, J. Porphyr. Phthalocya. 2016, 20, 1296–1305.
  • Sanusi, K.; Khene, S.; Nyokong, T. Enhanced optical limiting performance in phthalocyanine-quantum dot nanocomposites by free-carrier absorption mechanism. Opt Mater. (Amst) 2014, 37, 572–582.
  • Oluwole, D.O.; Yagodin, A.V.; Britton, J.; Martynov, A.G.; Gorbunova, Y.G.; Tsivadze, A-Y.; Nyokong, T. Optical limiters with improved performance based on nanoconjugates of thiol substitutedphthalocyanine with CdSe quantum dots and Ag nanoparticles, Dalton Trans. 2017, 46, 16190–16198.
  • Oluwole, D. O.; Yagodin, A. V.; Mhkize, N.C.; Sekhosana, K. E.; Martynov. A.G.; Gorbunova, Y.G.; Tsivadze, A-Y. Nyokong, T. First example of nonlinear optical materials based on nanoconjugates of sandwich phthalocyanines with quantum dots. Chem. - A European J. 2017, 23, 2820–2830.
  • Talapin, D.V.; Mekis, I.; Götzinger, S; Kornowski, A.; Benson, O.; Weller, H. CdSe/CdS/ZnS and CdSe/ZnSe/ZnS core–shell–shell nanocrystals. J. Phys. Chem. B 2004, 108, 18826–18831
  • Jia, W.; Douglas, E.P.; Guo, F.; Sun, W. Optical limiting of semiconductor nanoparticles for nanosecond laser pulses. Appl. Phys. Lett. 2004, 85, 6326–6328.
  • Koziar, J.C.; Cowa, D.O. Photochemical Heavy-Atom Effects. Acc. Chem. Res. 1978, 11, 334–341.
  • Venugopal Rao, S.; Anusha, P.T.; Giribabu, L.; Tewari, S.P. Picosecond optical nonlinearities in symmetrical and unsymmetrical phthalocyanines studied using the Z-scan technique. Pramana. 2010, 75, 1017–1023.
  • Oluwole, D.O.; Nyokong, T. Comparative photophysicochemical behaviour of nanoconjugates of indium tetracarboxyphenoxy phthalocyanines covalently linked to GSH-CdTe/ZnSe/ZnO. J. Photochem. Photobiol. A. 2015, 312, 34–44.
  • Dube, E.; Nwaji, N.; Oluwole, D. O.; Mack, J.; Nyokong, T. Investigation of photophysiochemical properties of zinc phthalocyanines conjugated to metallic nanoparticles. J. Photochem. Photobiol, 2017, 349, 148–161.
  • Li, Y.; Pritchett, T.M.; Huang, J.; Ke, M.; Shao, P.; Sun, W. Photophysics and Nonlinear Absorption of Peripheral-Substituted Zinc Phthalocyanines, J. Phys. Chem. A., 2008, 112, 7200–7207.
  • Oluwole, D.O.; Prinsloo, E.; Nyokong, T. Photophysicochemical properties of nanoconjugates of zinc(II) 2(3)–mono–2–(4–oxy)phenoxy)acetic acid phthalocyanine with cysteamine capped silver and silver–gold nanoparticles. Polyhedron., 2016, 119, 434–444.
  • Sekhosana, K. E.; Nyokong, T. The nonlinear absorption in new lanthanide double decker pyridine-based phthalocyanines in solution and thin films. Optical. Mat. 2015, 47, 211–218.
  • Li. L.; Zhao, J.-F.; Won, N.; Jin, H.; Kim, S. Chen, J.-Y. Quantum Dot - Aluminum phthalocyanine Conjugates perform photodynamic reactions to kill cancer cells via fluorescence resonce energy transfer (FRET). Nanoscale Res. Lett. 2012, 7, 386–393.
  • Stillman, M.J.; Nyokong, T. in: C.C. Leznoff, A.B.P Lever (Eds.), Phthalocyanines: Properties and Applications, VCH Publishers, NY, vol.1, 1989 (Chapter 3).
  • Prabakaran, P.R.; Kesavamoorthy, R.; Reddy, G.L.N.; Xavier, F.P. Structural Investigation of Copper Phthalocyanine Thin Films Using X-Ray Diffraction, Raman Scattering and Optical Absorption Measurements. Phys. Status Solid, 2002, 229, 1175–1186.
  • Snow, A.W.; Griffith, J.R.; Marullo, N.P. Syntheses and characterization of heteroatom-bridged metal-free phthalocyaninenetwork polymers and model compounds. Macromolecules, 1984, 17, 1614–1624.
  • Fery-Forgues, S.; Lavabre D. Are Fluorescence Quantum Yields So Tricky to Measure? A Demonstration Using Familiar Stationery Products. J. Chem. Educ, 76, 1999, 1260–1264.
  • Ogunsipe, A.; Chen, J.; Nyokong, T. Photophysical and photochemical studies of zinc(II) phtalocyanine derivatives-effects of substituents and solvents. New J. Chem. 28, 2004, 822–827.
  • Brouwer, A. M. Standards for photoluminescence quantum yield measurements in solution. Pure App. Chem. 83, 2011, 2213–2228.
  • Zenkevich, E.I.; Stupak, A.P.; Kowerko, D.; Borczyskowski, C. Influence of single dye molecules on temperature and time dependent optical properties of CdSe/ZnS quantum dots: Ensemble and single nanoassembly detection. J. Chem. Phy. 2012, 406, 21–29.
  • Lakowicz, J.R. Principles of Fluorescence Spectroscopy Principles of Fluorescence Spectroscopy. Springer 3rd ed. 2006.
  • Du, H.; Fuh, R.-C.A.; Li, J.; Corkan, L.A.; Lindsey, J.S. PhotochemCAD: A Computer-Aided Design and Research Tool in Photochemistry and Photobiology. Photochem. Photobiol. 68 1998, 141–142.
  • Nyokong, T.; Antunes, E. In Eds. Kadish, K.M Smith, K.M Guilard, R. The Handbook of Porphyrin Science. Chapter title: Photochemical and photophysical properties of metallophthalocyanines. Singapore: World Scientific. 2010. pp 247–349.
  • Tran-Thi, T. H.; Desforge, C.; Thiec, C.; Gaspard, S. Singlet-singlet and triplet-triplet intramolecular transfer processes in a covalently linked porphyrin-phthalocyanine heterodimer. J. Phys. Chem. 1989, 93, 1226–1233.
  • Sauvage, F.X. A Laser Photolysis Study of Triplet Lifetimes and of Triplet-Triplet Annihilation Reactions of Phthalocyanins in DMSO Solutions, Laser Chem. 1988, 8, 1–11.
  • van Leeuwen, M.; Beeby, A. S.; Ashworth, H. The photochemistry and photophysics of a series of non-peripherally substituted zinc phthalocyanines. Photochem. Photobiol. Sci.9, 2010, 370–375.
  • Auger, A.; Blau, W.J.; Burnham, P.M.; Chambrier, I.; Cook, M.J.; Isare, B.; Nekelson, F.; O'Flaherty, S.M. Nonlinear absorption properties of some 1,4,8,11,15,18,22,25-octaalkylphthalocyanines and their metallated derivatives. J. Mater. Chem. 2003, 13, 1042–1047.
  • Wei, T.-H.; Huang, T.-H.; Wen, T.-C. Mechanism of reverse saturable absorption in chloro-aluminum phthalocyanine solution studied with Z-scan. Chem. Phys. Lett. 1999, 314, 403–410.
  • Yüksek, M.; Elmali, A.; Durmuş, M.; Gul Yaglioglu, H.; Ünver, H.; Nyokong, T. Good optical limiting performance of indium and gallium phthalocyanines in a solution and co-polymer host, J. Opt. 2010, 12, 015208, 9 pages.
  • Bankole, O.M.; Osifeko, O.; Nyokong, T. Enhanced nonlinear optical responses of zinc diaminopyrimidin-2-ylthio phthalocyanine conjugated to AgxAuy alloy nanoparticles, J. Photochem. Photobiol. A Chem. 2016, 329, 155–166.
  • Karpo, A.B.; Pushkarev, V.E.; Krasovskii, V.I.; Tomilova, L.G. Z-scan study of nonlinear absorption in novel lanthanide bis-phthalocyanines. Chem. Phys. Lett. 2012, 554, 155–158.
  • Sheik-Bahae, M.; Said, A.A.; Wei, T.; Hagan, D.J.; Van Stryland, E.W. Sensitive measurement of optical nonlinearities using a single beam. IEEE J. Quantum Electron. 1990, 26, 760–769.
  • Dini, D.; Hanack, M. in: Kadish, K.M. Smith, K.M. Guilard R. (Eds.), The Porphyrin Handbook: Physical Properties of Phthalocyanine-based Materials. Academic Press, USA, 2003, 17, p. 22.
  • Ann Mary, K. A.; Unnikrishnan, N. V.; Philip, R. Role of surface states and defects in the ultrafast nonlinear optical properties of CuS quantum dots. APL Materials 2014, 2, 076104; https://doi.org/10.1063/1.4886276
  • Pritchett, T. Models for Saturable and Reverse Saturable Absorption in Materials for Optical Limiting; Sensors and Electron Devices Directorate. Army Research Laboratory. 2002; pp. 1–29.
  • Chen, Y.; Hanack, M.; Blau, W. J.; Dini, D.; Liu, Y.; Lin, Y.; Bai, J. Soluble axially substituted phthalocyanines: Synthesis and nonlinear optical response. J. Mater. Sci. 2006, 41, 2169–2185.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.