314
Views
16
CrossRef citations to date
0
Altmetric
Articles

Surfactant-assisted cabbage rose-like CuO deposition on Cu foam by for supercapacitor applications

ORCID Icon &
Pages 434-440 | Received 05 Mar 2018, Accepted 02 Jan 2019, Published online: 14 Feb 2019

References

  • Simon, P.; Gogotsi, Y. Materials for Electrochemical Capacitors. Nat. Mater. 2008, 7, 845–854. DOI:10.1038/nmat2297.
  • Zhang, L.; Hu, X.; Wang, Z.; Sun, F.; Dorrell, D.G. A Review of Supercapacitor Modeling, estimation, and Applications: A Control/management Perspective. Renew. Sustain. Energy Rev. 2018, 81,1868–1879. DOI:10.1016/j.rser.2017.05.283.
  • Li, X.; Han, C.; Chen, X.; Shi, C. Preparation and Performance of Straw Based Activated Carbon for Supercapacitor in Non-aqueous Electrolytes. Microporous Mesoporous Mater. 2010, 131, 303–309. DOI:10.1016/j.micromeso.2010.01.007.
  • Li, G.-R.; Feng, Z.-P.; Ou, Y.-N.; Wu, D.; Fu, R.; Tong, Y.-X. Mesoporous MnO2/Carbon Aerogel Composites as Promising Electrode Materials for High-performance Supercapacitors. Langmuir 2010, 26, 2209–2213. DOI:10.1021/la903947c.
  • Zhang, S.; Li, Y.; Pan, N. Graphene Based Supercapacitor Fabricated by Vacuum Filtration Deposition. J. Power Sources 2012, 206, 476–482. DOI:10.1016/j.jpowsour.2012.01.124.
  • Pan, H.; Li, J.; Feng, Y. P. Carbon Nanotubes for Supercapacitor. Nanoscale Res. Lett. 2010, 5, 654–668. DOI:10.1007/s11671-009-9508-2.
  • Liu, T.; Pell, W. G.; Conway, B. E. Self-discharge and Potential Recovery Phenomena at Thermally and Electrochemically Prepared RuO2 Supercapacitor Electrodes. Electrochim. Acta 1997, 42, 3541–3552. DOI:10.1016/S0013-4686(97)81190-5.
  • He, D.; Wang, G.; Liu, G.; Suo, H.; Zhao, C. Construction of Leaf-like CuO-Cu2O nanocomposites on copper foam for high-performance supercapacitors. Dalton Trans. 2017, 46, 3318–3324. DOI:10.1039/C7DT00287D.
  • Lokhande, P. E.; Pawar, K.; Chavan, U. S. Chemically Deposited Ultrathin α-Ni(OH)2 Nanosheet Using Surfactant on Ni Foam for High Performance Supercapacitor Application. Mater. Sci. Energy Technol. 2018, 1, 166–170. DOI:10.1016/j.mset.2018.07.001.
  • Lokhande, P. E.; Chavan, U. S. Nanoflower-like Ni(OH)2 Synthesis with Chemical Bath Deposition Method for High Performance Electrochemical Applications. Mater. Lett. 2018, 218, 225–228. DOI:10.1016/j.matlet.2018.02.012.
  • Gupta, V.; Kusahara, T.; Toyama, H.; Gupta, S.; Miura, N. Potentiostatically Deposited Nanostructured α-Co(OH)2: A High Performance Electrode Material for Redox-Capacitors. Electrochem. Commun. 2007, 9, 2315–2319. DOI:10.1016/j.elecom.2007.06.041.
  • Qu, Q.; Zhang, P.; Wang, B.; Chen, Y.; Tian, S.; Wu, Y.; Holze, R. Electrochemical Performance of MnO2 Nanorods in Neutral Aqueous Electrolytes as a Cathode for Asymmetric Supercapacitors. J. Phys. Chem. C 2009, 113, 14020–14027. DOI:10.1021/jp8113094.
  • Lokhande, C. D.; Dubal, D. P.; Joo, O. S. Metal Oxide Thin Film Based Supercapacitors. Curr. Appl. Phys. 2011, 11, 255–270. DOI:10.1016/j.cap.2010.12.001.
  • Vangari, M.; Pryor, T.; Jiang, L. Supercapacitors: Review of Materials and Fabrication Methods. J. Energy Eng. 2013, 139, 72–79. DOI:10.1061/(ASCE)EY.1943-7897.0000102.
  • Wang, G.; Huang, J.; Chen, S.; Gao, Y.; Cao, D. Preparation and Supercapacitance of CuO Nanosheet Arrays Grown on Nickel Foam. J. Power Sources 2011, 196, 5756–5760. DOI:10.1016/j.jpowsour.2011.02.049.
  • Li, Y.; Chang, S.; Liu, X.; Huang, J.; Yin, J.; Wang, G.; Cao, D. Nanostructured CuO Directly Grown on Copper Foam and Their Supercapacitance Performance. Electrochim. Acta 2012, 85, 393–398. DOI:10.1016/j.electacta.2012.07.127.
  • Li, Y.; Wang, X.; Yang, Q.; Javed, M. S.; Liu, Q.; Xu, W.; Hu, C.; Wei, D. Ultra-fine CuO Nanoparticles Embedded in Three-dimensional Graphene Network Nano-structure for High-performance Flexible Supercapacitors. Electrochim. Acta 2017, 234, 63–70. DOI:10.1016/j.electacta.2017.02.167.
  • Xin, Zhang, Y.; Li, F.; Huang, M. One-step Hydrothermal Synthesis of Hierarchical MnO2-coated CuO Flower-like Nanostructures with Enhanced Electrochemical Properties for Supercapacitor. Mater. Lett. 2013, 112, 203–206. DOI:10.1016/j.matlet.2013.09.032.
  • Dubal, D. P.; Gund, G. S.; Holze, R.; Lokhande, C. D. Mild Chemical Strategy to Grow Micro-roses and Micro-woolen like Arranged CuO Nanosheets for High Performance Supercapacitors. J. Power Sources 2013, 242, 687–698. DOI:10.1016/j.jpowsour.2013.05.013.
  • Dubal, D. P.; Gund, G. S.; Holze, R.; Lokhande, C. D. Enhancement in Supercapacitive Properties of CuO Thin Films Due to the Surfactant Mediated Morphological Modulation. J. Electroanal. Chem. 2014, 712, 40–46. DOI:10.1016/j.jelechem.2013.10.025.
  • Gund, G. S.; Dubal, D. P.; Dhawale, D. S.; Shinde, S. S.; Lokhande, C. D. Porous CuO Nanosheet Clusters Prepared by a Surfactant Assisted Hydrothermal Method for High Performance Supercapacitors. RSC Adv. 2013, 3, 24099–24107. DOI:10.1039/c3ra43254h.
  • Zhang, X.; He, M.; He, P.; Liu, H.; Bai, H.; Chen, J.; He, S.; Zhang, X.; Dong, F.; Chen, Y.; et al. Hierarchical Structured Sm2O3 Modified CuO Nanoflowers as Electrode Materials for High Performance Supercapacitors. Appl. Surf. Sci. 2017, 426, 933–943. DOI:10.1016/j.apsusc.2017.07.236.
  • Ede, S. R.; Anantharaj, S.; Kumaran, K. T.; Mishra, S.; Kundu, S. One Step Synthesis of Ni/Ni(OH)2 Nano Sheets (NSs) and Their Application in Asymmetric Supercapacitors. RSC Adv. 2017, 7, 5898–5911. DOI:10.1039/C6RA26584G.
  • Yu, L.; Jin, Y.; Li, L.; Ma, J.; Wang, G.; Geng, B.; Zhang, X. 3D Porous Gear-Like Copper Oxide and Their High Electrochemical Performance as Supercapacitors. CrystEngComm 2013, 15, 7657. DOI:10.1039/c3ce40824h.
  • Dubal, D. P.; Gund, G. S.; Holze, R.; Jadhav, H. S.; Lokhande, C. D.; Park, C.-J. Surfactant-assisted Morphological Tuning of Hierarchical CuO Thin Films for Electrochemical Supercapacitors. Dalton Trans. 2013, 42, 6459–6467. DOI:10.1039/c3dt50275a.
  • Singh, P. U. R. U. S. H. O. T. T. A. M. K. U. M. A. R.; Kumar, P. A. N. K. A. J.; Hussain, M. A. N. O. W. A. R.; DAS, A. L. O. K. K. U. M. A. R.; Nayak, G. A. N. E. S. H. C. H. A. N. D. R. A. Synthesis and Characterization of CuO Nanoparticles Using Strong Base Electrolyte through Electrochemical Discharge Process. Bull. Mater. Sci. 2016, 39, 469–478. DOI:10.1007/s12034-016-1159-1.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.