126
Views
2
CrossRef citations to date
0
Altmetric
Articles

A novel rare-earth nitronyl nitroxide radical complex as a high-efficiency sensor for Cr3+ and Cr2O72− ions in aqueous solutions

, , , &
Pages 454-460 | Received 28 May 2018, Accepted 02 Jan 2019, Published online: 11 Mar 2019

References

  • Vaidyanathan, V. G.; Weyhermuller, T.; Nair, B. U.; Subramanian, J. DNA Damage Induced by a Chromium (III) Schiff Base Complex is Reversible under Physiological Condition. J. Inorg. Biochem. 2005, 99, 2248–2255. DOI: 10.1016/j.jinorgbio.2005.08.007.
  • (a) Warren, G.; Schultz, P.; Bancroft, D.; Bennett, K.; Abbott, E.H.; Rogers, S. Mutagenicity of a Series of Hexacoordinate Chromium(III) Compounds. Mutat. Res. Genet. Toxicol. Test. 1981, 90, 111–118. DOI: 10.1016/0165-1218(81)90073-2.[Mismatch]; (b) Elias, Z.; Poirot, O.; Schneider, O.; Daniere, M. C.; Terzetti, F.; Guedenet, J. C.; Cavelier, C. Cellular Uptake, Cytotoxic and Mutagenic Effects of Insoluble Chromic Oxide in V79 Chinese Hamster Cells. Mutat. Res. Genet. Toxicol. Test. 1986, 169, 159–170. [CrossRef][https://doi.org/10.1016/0165-1218(86)90095-9][Mismatch]; (c) Arakawa, H.; Ahmad, R.; Naoui, M.; Tajmir-Riahi, H. A. A Comparative Study of Calf Thymus DNA Binding to Cr(III) and Cr(VI) Ions. J. Biol. Chem. 2000, 275, 10150–10153.
  • Manning, F. C. R.; Blankenship, L. J.; Wise, J. P.; Xu, J.; Bridgewater, L. C.; Patierno, S. R. Induction of Internucleosomal DNA Fragmentation by Carcinogenic Chromate: Relationship to DNA Damage, Genotoxicity, and Inhibition of Macromolecular Synthesis. Environ. Health Persp.1994, 102, 159–167. DOI: 10.1289/ehp.94102s3159.
  • Sugden, D.; Geer, R. D.; Rogers, S. J. Oxygen Radical-Mediated DNA Damage by Redox-Active Chromium (III) Complexes. Biochemistry. 1992, 31, 11626–11631.
  • (a) Sugden, K. D.; Stearns, D. M. The Role of Chromium (V) in the Mechanism of Chromate-Induced Oxidative DNA Damage and Cancer. J. Environ. Pathol. Toxicol. Oncol .2000, 19, 215–230.; (b) Zhitkovich, A.; Song, Y.; Quievryn, G.; Voitkun, V. Non-Oxidative Mechanisms are Responsible for the Induction of Mutagenesis by Reduction of Cr(VI) with Cysteine: Role of Ternary DNA Adducts in Cr(III)-dependent Mutagenesis. Biochemistry. 2001, 40, 549–560. DOI: 10.1021/bi0015459.[Mismatch]; (c) Manygoats, K. R.; Yazzie, M.; Stearns, D. M. Ultrastructural Damage in Chromium Picolinate-Treated Cells: A TEM Study. J. Biol. Inorg. Chem. 2002, 7, 791–798. [PMC][https://doi.org/10.1007/s00775-002-0357-z] [https://doi.org/12203015][Mismatch]; (d) Ksheminska, H.; Fedorovych, D.; Babyak, L.; Yanovych, D.; Kaszycki, P.; Koloczek, H.; Ksheminska, H.; Fedorovych, D.; Babyak, L.; Yanovych, D.; Kaszycki, P.; Koloczek, H. Chromium (III) and (VI) Tolerance and Bioaccumulation in Yeast: A Survey of Cellular Chromium Content in Selected Strains of Representative Genera. Process Biochem. 2005, 40, 1565–1572.
  • Calevro, F.; Campani, S.; Ragghianti, M.; Bucci, S.; Mancino, G. Tests of Toxicity and Teratogenicity in Biphasic Vertebrates Treated with Heavy Metals (Cr3+, A13+, Cd2+). Chemosphere. 1998, 37, 3011–3017.
  • Prakash, A.; Chandra, S.; Bahadur, D. Structural, Magnetic, and Textural Properties of Iron Oxide-Reduced Graphene Oxide Hybrids and Their Use for the Electrochemical Detection of Chromium. Carbon. 2012, 50, 4209–4219.
  • Lin, D.; Wu, J.; Wang, M.; Yan, F.; Ju, H. Triple Signal Amplification of Graphene Film, Poly Bead Carried Gold Nanoparticles as Tracing Tag and Silver Deposition for Ultrasensitive Electrochemical Immune Sensing. Anal. Chem. 2012, 84, 3662–3668. DOI: 10.1021/ac3001435.
  • Feldman, F. J.; Knoblock, E. C.; Purdy, W. C. The Determination of Chromium in Biological Materials by Atomic Absorption Spectroscopy. Anal. Chim. Acta.1967, 38, 489–497. DOI: 10.1016/S0003-2670(01)80617-6.
  • Yang, S.; Yin, B.; Xu, L.; Gao, B.; Sun, H.; Du, L.; Tang, Y.; Jiang, W.; Cao, F. A Natural Quercetin-Based Fluorescent Sensor for Highly Sensitive and Selective Detection of Copper Ions. Anal. Methods. 2015, 7, 4546–4551. DOI: 10.1039/C5AY00375J.
  • Shi, P. F.; Zhao, B.; Xiong, G.; Hou, Y. L.; Cheng, P. Fast Capture and Separation of, and Luminescent Probe for, Pollutant Chromate Using a Multi-Functional Cationic Hetero Metal-Organic Framework. Chem. Commun. 2012, 48, 8231–8233. DOI: 10.1039/c2cc33707j.
  • Ullman, E. F.; Osiecki, J. H.; Book, D. G. B.; Darcy, R.J. Stable Free Radicals. X. Nitronyl Nitroxide Monoradicals and Biradicals as Possible Small Molecule Spin Labels. Am. Chem. Soc. 1972, 94, 7049–7059. DOI: 10.1021/ja00775a031.
  • (a) Gilat, S. L.; Kawai, S. H.; Lehn, J. M. Light-Triggered Molecular Devices: Photochemical Switching of Optical and Electrochemical Properties in Molecular Wire Type Diarylethene Species. Chem. Eur. J. 1995, 1, 275–284. DOI: 10.1002/chem.19950010504.; (b) Takayama, K.; Matsuda, K.; Irie, M. Photoswitching of the Magnetic Interaction between a Copper(II) Ion and a Nitroxide Radical by Using a Photochromic Spin Coupler. Chem. Eur. J. 2003, 9, 5605–5609. [CrossRef][https://doi.org/10.1002/chem.200305154][Mismatch]; (c) Ziessel, R.; Ulrich,G.; Lawson, R. C.; Eschegoyen, L. Oligopyridine Bis(Nitronyl Nitroxides): Synthesis, Structures, Electrochemical, Magnetic and Electronic Properties. J. Mater. Chem. 1999, 9, 1435–1448. [CrossRef][https://doi.org/10.1039/a810044f][Mismatch]; (d) Zhang, D.; Wang, Z.; Ding, L.; Zhang, B.; Xu,W.; Zhu, D.; Yan, C. Triphenylamine Derivatives Containing Nitronyl Nitroxide and Iminyl Nitroxide-Syntheses, Characterization, Crystal Structures and Magnetic Studies. Chin. J. Chem. 2001, 19, 966–975.
  • (a) Yu Y. X.; Zhang D. Q.; Zhang G. X.; Wang, Z. Y.; Zhu, D. B. Bisnitronyl Nitroxides Bridged By Tetra(Ethyleneoxy) Sensing Metal Ions Spectroscopically and Electrochemically. Tetrahedron Lett. 2006, 47,3413–3417. DOI: 10.1016/j.tetlet.2006.03.061.; (b) Yang, S. L.; Wang, R. R.; Jin, X. J.; Zhang, C. X., Wang, Q. L. Four New Rare-Earth Nitronyl Nitroxide Radical Complexes: Magnetic and Luminescent Properties. Polyhedron. 2018, 144, 101–106.
  • (a) Rao, X.; Song, T.; Gao, J.; Cui, Y.; Yang, Y.; Wu, C.; Chen, B.; Qian, G. A Highly Sensitive Mixed Lanthanide Metal–Organic Framework Self-Calibrated Luminescent Thermometer. J. Am. Chem. Soc. 2013, 135, 15559–15564. DOI: 10.1021/ja407219k.; (b) Bunzli, J. C. G.; Eliseeva, S. V. Intriguing Aspects of Lanthanide Luminescence. Chem. Sci. 2013, 4, 1939–1949.; (c) João, R.; Luís, D. C.; Filipe A, A. P.; Duarte, A. Luminescent Multifunctional Lanthanides-Based Metal–Organic Frameworks. Chem. Soc. Rev. 2011, 40, 926–940.; (d) Cui, Y. J.; Yue, Y. F.; Qian, G. D.; Chen, B. L. Luminescent Functional Metal–Organic Frameworks. Chem. Rev. 2012, 112, 1126–1162. [PMC][https://doi.org/10.1021/cr200101d] [https://doi.org/21688849][Mismatch]; (e) Johanna, H.; Buschbaum, K. M. Engineering Metal-Based Luminescence in Coordination Polymers and Metal–Organic Frameworks. Chem. Soc. Rev. 2013,42, 9232–9242.; (f) Hu, Z. C.; Deibert, B. J.; Li, J. Luminescent Metal–Organic Frameworks for Chemical Sensing and Explosive Detection. Chem. Soc. Rev. 2014, 43, 5815–5840. [CrossRef][https://doi.org/10.1039/C4CS00010B]; (g) Xu, H.; Fang, M.; Cao, C. S.; Qiao, W. Z.; Zhao, B. Unique (3,4,10)-Connected Lanthanide–Organic Framework as a Recyclable Chemical Sensor for Detecting Al3+. Inorg. Chem. 2016, 55, 4790–4794.
  • (a) Hao, J. N.; Yan, B. Amino-Decorated Lanthanide(III) Organic Extended Frameworks for Multi-Color Luminescence and Fluorescence Sensing. J. Mater. Chem. C. 2014, 2, 6758–6764. DOI: 10.1039/C4TC00962B.; (b) Hao, J. N.; Yan, B. A Water-Stable Lanthanide-Functionalized MOF as a Highly Selective and Sensitive Fluorescent Probe for Cd2+. Chem. Commun. 2015, 51, 7737–7740. [CrossRef][https://doi.org/10.1039/C5CC01430A][Mismatch]; (c) Zhan, C.; Ou, S.; Zou, C.; Zhao, M.; Wu, C.-D. A Luminescent Mixed-Lanthanide-Organic Framework Sensor for Decoding Different Volatile Organic Molecules. Anal. Chem. 2014, 86, 6648–6653. [CrossRef][https://doi.org/10.1021/ac5013442]; (d) Chen, Z.; Sun, Y.; Zhang, L.; Sun, D.; Liu, F.; Meng, Q.; Wang, R.; Sun, D. A Luminescent Mixed-Lanthanide-Organic Framework Sensor for Decoding Different Volatile Organic Molecules. Chem. Commun. 2013, 49, 11557–11559. [CrossRef][https://doi.org/10.1039/c3cc46613b][Mismatch]; (e) Sun, W.; Wang, J.; Zhang, G.; Liu, Z. A Tubular Europium–Organic Framework Exhibiting Selective Sensing of Fe3+ and Al3+ Over Mixed Metal Ions. RSC Adv. 2014, 4, 55252–55255. [CrossRef][https://doi.org/10.1039/C4RA10153G][Mismatch]; (f) Song, X. Z.; Song, S. Y.; Zhao, S. N.; Hao, Z. M.; Zhu, M.; Meng, X.; Wu, L. L.; Zhang, H. J. Single-Crystal-to-Single-Crystal Transformation of a Europium (III) Metal-Organic Framework Producing a Multi-Responsive Luminescent Sensor. Adv. Funct. Mater. 2014, 24, 4034–4041.; (g) Bo, Q. B.; Zhang, H. T.; Wang, H. Y.; Miao, J. L.; Zhang, Z. W. Anhydrous Lanthanide MOFs and Direct Photoluminescent Sensing for Polyoxometalates in Aqueous Solution. Chem. Eur. J. 2014, 20, 3712–3723. [CrossRef][https://doi.org/10.1002/chem.201303677][Mismatch]; (h) Dang, S.; Ma, E.; Sun, Z.-M.; Zhang, H. A Layer-Structured Eu-MOF as a Highly Selective Fluorescent Probe for Fe3+ Detection Through a Cation-Exchange Approach. J. Mater. Chem. 2012, 22, 16920–16926. [CrossRef][https://doi.org/10.1039/c2jm32661b][Mismatch]; (i) Zheng, M.; Tan, H.; Xie, Z.; Zhang, L.; Jing, X.; Sun, Z. Fast Response and High Sensitivity Europium Metal Organic Framework Fluorescent Probe With Chelating Terpyridine Sites for Fe3+. ACS Appl. Mater. Interfaces. 2013, 5, 1078–1083. [CrossRef][https://doi.org/10.1021/am302862k][Mismatch]; (j) Yang, C. X.; Ren, H. B.; Yan, X. P. Fluorescent Metal–Organic Framework MIL-53(Al) for Highly Selective and Sensitive Detection of Fe3+ in Aqueous Solution. Anal. Chem. 2013, 85, 7441–7446.
  • (a) Allendorf, M. D.; Bauer, C. A.; Bhakta, R K., Houk, R. J. T. Luminescent Metal–Organic Frameworks. Chem. Soc. Rev. 2009, 38, 1330–1352. [PMC][https://doi.org/10.1039/b802352m] [https://doi.org/19384441]; (b) Cui, Y.; Chen, B.; Qian, G. D. Lanthanide Metal-Organic Frameworks for Luminescent Sensing and Light-Emitting Applications. Chem. Rev. 2014, 273, 76–86. DOI: 10.1016/j.ccr.2013.10.023.
  • Bernot, K.; Bogani, L.; Caneschi, A.; Gatteschi, D.; Sessoli, R.-J. A family of Rare-Earth-Based Single Chain Magnets: Playing with Anisotropy. J. Am. Chem. Soc. 2006, 128,7947–7956.
  • Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Pushmann, H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Crystallogr. 2009, 42, 339–341. DOI: 10.1107/S0021889808042726.
  • Sheldrick, G. M. A Short History of SHELX. Acta Cryst. 2008, 64, 112–122.
  • Wang, Y. L.; Gao, Y. Y.; Ma, Y.; Wang, Q. L.; Li, L. C.; Liao, D. Z. Syntheses, Crystal Structures, Magnetic and Luminescence Properties of Five Novel Lanthanide Complexes of Nitronyl Nitroxide Radical. J. Solid-State. Chem. 2013, 202, 276–281. DOI: 10.1016/j.jssc.2013.03.052.
  • Fan, Z.; Hou, Y. F.; Wang, S.P.; Yang, S. T.; Zhang, J. J.; Shi, S. K.; Geng, L. N. Synthesis, Crystal Structure, and Magnetic Property of New Trispin Ln(III)‐Nitronyl Nitroxide Complexes. Helv. Chim. Acta. 2016, 99, 732–741. DOI: 10.1002/hlca.201600152.
  • Elangannan, A.; Gautam R, D.; Roger A, K.; Joanna, S.; Steve, S. Defining the Hydrogen Bond: An Account. Pure Appl. Chem. 2011, 83, 1619–1636.
  • Liu, J. J.; Ji, G.F., Xiao, J. N.; Liu, Z. L. Ultrastable 1D Europium Complex for Simultaneous and Quantitative Sensing of Cr(III) and Cr(VI) Ions in Aqueous Solution with High Selectivity and Sensitivity. Inorg. Chem. 2017, 56, 4197–4205.
  • Qu, K. G.; Wang, J. S.; Ren, J. S.; Qu, X. G. Carbon Dots Prepared by Hydrothermal Treatment of Dopamine as an Effective Fluorescent Sensing Platform for the Label‐Free Detection of Iron(III) Ions and Dopamine. Chem. Eur. J. 2013, 19, 7243–7249. DOI: 10.1002/chem.201300042.
  • (a) Sun, Z.; Yang, M.; Ma, Y.; Li, L.C. Multi-Responsive Luminescent Sensors Based on Two-Dimensional Lanthanide–Metal Organic Frameworks for Highly Selective and Sensitive Detection of Cr(III) and Cr(VI) Ions and Benzaldehyde. Cryst. Growth. Des. 2017, 17, 4326–4335. DOI: 10.1021/acs.cgd.7b00638.; (b) Li, G.P.; Liu, G.; Li, Y. Z.; Hou, L.; Wang, Y. Y.; Zhu, Z. H. Uncommon Pyrazoyl-Carboxyl Bifunctional Ligand-Based Microporous Lanthanide Systems: Sorption and Luminescent Sensing Properties. Inorg. Chem. 2016, 55, 3952–3959.
  • Chen, B., Xiang, S., Qian, G. Metal − Organic Frameworks with Functional Pores for Recognition of Small Molecules. Acc. Chem. Res. 2010, 43, 1115–1124. DOI: 10.1021/ar100023y.
  • Lv, R.; Wang, J.; Zhang, Y.; Li, H.; Yang, L.; Liao, S.; Gu, W.; Liu, X. An amino-Decorated Dual-Functional Metal–Organic Framework for Highly Selective Sensing of Cr (III) and Cr (VI) Ions and Detection of Nitroaromatic Explosives. J. Mater. Chem. A. 2016, 4, 15494–15500. DOI: 10.1039/C6TA05965A.
  • Wen, G. X.; Han, M. L.; Wu, X. Q.; Y. Wu; P. W. Dong; W. W. Zhao; J. Li; D. S. Ma; L. F. A Multi-Responsive Luminescent Sensor Based on a Super-Stable Sandwich-Type Terbium(III)–Organic Framework. Dalton Trans. 2016, 45, 15492–15499. DOI: 10.1039/C6DT03057B.
  • Li, H. N.; Zhu, M. Y.; Wang, S.S.; Chen, W.; Liu, Q.; Qian, J.; Hao, N.; Wang, K. Synergy Effect of Specific Electrons and Surface Plasmonic Resonance Enhanced Visible-Light Photoelectrochemical Sensing for Sensitive Analysis of the CaMV 35S Promoter. J. Mater. Chem. C, 2017, 5, 8999–9005. DOI: 10.1039/C7TB02265D.
  • Liu, W.; Huang, X.; Xu, C.; Chen, C.; Yang, L.; Dou, W.; Chen, W.; Yang, H.; Liu, W. S. A Multi-Responsive Regenerable Europium-Organic Framework Luminescent Sensor for Fe3+, CrVI Anions, and Picric Acid. Chem. Eur. J. 2016, 22, 18769–18776.
  • Gao, R. C.; Guo, F. S.; Bai, N. N.; Wu, Y. L.; Yang, F.; Liang, J. Y.; Li, Z. J.; Wang, Y. Y. Two 3D Isostructural Ln(III)-MOFs: Displaying the Slow Magnetic Relaxation and Luminescence Properties in Detection of Nitrobenzene and Cr2O72–. Inorg. Chem. 2016, 55, 11323–11330.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.