105
Views
6
CrossRef citations to date
0
Altmetric
Articles

Magnetic nanocrystallites strontium hexaferrite as an efficient catalyst in the green Betti reaction

ORCID Icon, , , ORCID Icon &
Pages 515-520 | Received 28 Mar 2017, Accepted 02 Jan 2019, Published online: 11 Mar 2019

References

  • Viswanathan, B.; Murthy, V. Ferrite Materials: Science and Technology, Springer Verlag: New York, 1990.
  • Abrishami, F.; Ebrahimikia, M.; Rafiee, F. Synthesis of 5-substituted 1H-tetrazoles using a recyclable heterogeneous nanonickel ferrite catalyst. Appl. Organometal. Chem. 2015, 29, 730–735. DOI: 10.1002/aoc.3358.
  • Kulkarni, A. M.; Pandit, K. S.; Chavan, P. V.; Desai, U. V.; Wadgaonkar, P. P. Cobalt ferrite nanoparticles: a magnetically separable and reusable catalyst for Petasis-Borono-Mannich reaction. RSC Adv. 2015, 5, 70586–70594. DOI: 10.1039/C5RA10693A.
  • Wolska, J.; Przepiera, K.; Grabowska, H.; Przepiera, A.; Jabłoński, M.; Klimkiewicz, R. ZnFe2O4 as a new catalyst in the C-methylation of phenol. Res. Chem. Intermed. 2008, 34, 43–51. DOI: 10.1007/BF03039134.
  • Xian, T.; Yang, H.; Di, L. J.; Dai, J. F. Graphene-assisted Enhancement of Photocatalytic Activity of Bismuth Ferrite Nanoparticles. Res. Chem. Intermed. 2015, 41, 433–441. DOI: 10.1007/s11164-013-1204-2.
  • Ahankar, H.; Ramazani, A.; Joo, S. W. Magnetic nickel ferrite nanoparticles as an efficient catalyst for the preparation of polyhydroquinoline derivatives under microwave irradiation in solvent-free conditions. Res. Chem. Intermed. 2016, 42, 2487–2500. DOI: 10.1007/s11164-015-2163-6.
  • Pullar, R. C. Hexagonal ferrites: a review of the synthesis, properties and applications of hexaferrite ceramics. Prog. Mater Sci. 2012, 57, 1191–1334. DOI: 10.1016/j.pmatsci.2012.04.001.
  • Yongfei, W.; Qiaoling, L.; Cunrui, Z.; Hongxia, J. Preparation and magnetic properties of different morphology nano-SrFe12O19 particles prepared by Sol–gel method. J. Alloys Compd. 2009, 467, 284–287. DOI: 10.1016/j.jallcom.2007.12.037.
  • Tang, X.; Hong, R. Y.; Feng, W. G.; Badami, D. Ethylene glycol assisted hydrothermal synthesis of strontium hexaferrite nanoparticles as precursor of magnetic fluid. J. Alloys Compd. 2013, 562, 211–218. DOI: 10.1016/j.jallcom.2013.02.049.
  • Javed Iqbal, M.; Naeem Ashiq, M.; Hussain Gul, I. Physical, electrical and dielectric properties of Ca-substituted strontium hexaferrite (SrFe12O19) nanoparticles synthesized by co-precipitation method. J. Magn. Magn. Mater. 2010, 322, 1720–1726.
  • Guo, Z.-B.; Ding, W.-P.; Zhong, W.; Zhang, J.-R.; Du, Y.-W. Preparation and magnetic properties of SrFe12O19 particles prepared by the salt-melt method. J. Magn. Magn. Mater. 1997, 175, 333–336.
  • Ketov, S. V.; Yagodkin, Y. D.; Lebed, A. L.; Chernopyatova, Y. V.; Khlopkov, K. Structure and magnetic properties of nanocrystalline SrFe12O19 alloy produced by high-energy ball milling and annealing. J. Magn. Magn. Mater. 2006, 300, e479–e481. DOI: 10.1016/j.jmmm.2005.10.199.
  • Betti, M. General condensation reaction between b-naphthol, aldehydes and amines. Gazz. Chim. Ital. 1900, 30, 310–316.
  • Asadi, S.; Mohammadi Ziarani, G.; Rahimifard, M.; Abolhassani Soorki, A. A green one-pot synthesis of spironaphthopyrano[1,2-b]indeno-7,3′-indolines. Res. Chem. Intermed. 2015, 41, 6219–6227. DOI: 10.1007/s11164-014-1734-2.
  • Mohammadi Ziarani, G.; Moradi, R.; Badiei, A.; Lashgari, N.; Moradi, B.; Abolhasani Soorki, A. Efficient green synthesis of 3,3-di(indolyl)indolin-2-ones using sulfonic acid functionalized nanoporous SBA-Pr-SO3H and study of their antimicrobial properties. J. Taibah Univ. Sci. 2015, 9, 555–563. DOI: 10.1016/j.jtusci.2014.11.009.
  • Afsar, S. Y.; Mohammadi Ziarani, G.; Mollabagher, H.; Gholamzadeh, P.; Badiei, A.; Soorki, A. A. Application of SBA-Pr-SO3H in the synthesis of 2, 3-dihydroquinazoline-4(1H)-ones: characterization, UV–Vis investigations and DFT studies. J. Iran. Chem. Soc. 2017, 14, 577–583. DOI: 10.1007/s13738-016-1006-8.
  • Gholamzadeh, P.; Mohammadi Ziarani, G.; Lashgari, N.; Badiei, A.; Shayesteh, A.; Jafari, M. A simple colorimetric chemosensor for naked eye detection of cyanide ion. J. Fluoresc. 2016, 26, 1857–1864.
  • Mohammadi Ziarani, G.; Ghorbi, S.; Gholamzadeh, P.; Badiei, A. Application of SBA-Pr-SO3H as a solid acid nanoreactor in the Biginelli reaction. Iran. J. Catal. 2016, 6, 229–235.
  • Lashgari, N.; Badiei, A.; Mohammadi Ziarani, G. A novel functionalized nanoporous SBA-15 as a selective fluorescent sensor for the detection of multianalytes (Fe3+ and Cr2O72−) in water. J. Phys. Chem. Solids 2017, 103, 238–248. DOI: 10.1016/j.jpcs.2016.11.021.
  • Ghobeiti Hasab, M.; Seyyed Ebrahimi, S. A.; Badiei, A. An investigation on physical properties of strontium hexaferrite nanopowder synthesized by a sol–gel auto-combustion process with addition of cationic surfactant. J. Eur. Ceram. Soc. 2007, 27, 3637–3640. DOI: 10.1016/j.jeurceramsoc.2007.02.004.
  • Alamolhoda, S.; Seyyed Ebrahimi, S. A.; Badiei, A. A study on the formation of strontium hexaferrite nanopowder by a sol–gel auto-combustion method in the presence of surfactant. J. Magn. Magn. Mater. 2006, 303, 69–72. DOI: 10.1016/j.jmmm.2005.10.194.
  • Jha, A.; Paul, N. K.; Trikha, S.; Cameron, T. S. Novel synthesis of 2-naphthol Mannich bases and their NMR behaviour. Can. J. Chem. 2006, 84, 843–853. DOI: 10.1139/v06-081.
  • Dindulkar, S. D.; Puranik, V. G.; Jeong, Y. T. Supported copper triflate as an efficient catalytic system for the synthesis of highly functionalized 2-naphthol mannich bases under solvent free condition. Tetrahedron Lett. 2012, 53, 4376–4380. DOI: 10.1016/j.tetlet.2012.06.022.
  • Shaterian, H. R.; Mohammadnia, M. Nanocrystalline TiO2–HClO4 catalyzed three-component preparation of derivatives of 1-amidoalkyl-2-naphthol, 1-carbamato-alkyl-2-naphthol, 1-(α-aminoalkyl)-2-naphthol, and 12-aryl-8,9,10,12-tetrahydrobenzo[a]-Xanthen-11-One. Res. Chem. Intermed. 2013, 39, 4221–4237. DOI: 10.1007/s11164-012-0938-6.
  • Grumbach, H.-J.; Arend, M.; Risch, N. Aminoalkylation of electron-rich aromatic compounds using performed iminium salts derived from aldehydes other than formaldehyde. Synthesis 1996, 1996, 883–887. DOI: 10.1055/s-1996-4301.
  • Saidi, M. R.; Azizi, N.; Naimi-Jamal, M. R. Lithium perchlorate assisted one-pot three-component aminoalkylation of electron-rich aromatic compounds. Tetrahedron Lett 2001, 42, 8111–8113. DOI: 10.1016/S0040-4039(01)01732-4.
  • Periasamy, M.; Anwar, S.; Reddy, M. N. Simple and convenient methods for synthesis, resolution and application of aminonaphthols. Indian J. Chem. B 2009, 48, 1261.
  • Kore, R.; Srivastava, R. Synthesis and applications of novel imidazole and benzimidazole based sulfonic acid group functionalized Brönsted acidic ionic liquid catalysts. J. Mol. Catal. A: Chem. 2011, 345, 117–126. DOI: 10.1016/j.molcata.2011.06.003.
  • Kumar, A.; Gupta, M. K.; Kumar, M. Non-ionic surfactant catalyzed synthesis of Betti base in water. Tetrahedron Lett. 2010, 51, 1582–1584. DOI: 10.1016/j.tetlet.2010.01.056.
  • Karmakar, B.; Banerji, J. A competent pot and atom-efficient synthesis of Betti bases over nanocrystalline MgO involving a modified mannich type reaction. Tetrahedron Lett. 2011, 52, 4957–4960. DOI: 10.1016/j.tetlet.2011.07.075.
  • Kaczmarek, W. A.; Idzikowski, B.; Müller, K.-H. XRD and VSM study of Ball-milled SrFe12O19 powder. J. Magn. Magn. Mater. 1998, 177-181, 921–922. DOI: 10.1016/S0304-8853(97)00839-1.
  • Jean, M.; Nachbaur, V.; Bran, J.; Le Breton, J.-M. Synthesis and characterization of SrFe12O19 powder obtained by hydrothermal process. J. Alloys Compd. 2010, 496, 306–312. DOI: 10.1016/j.jallcom.2010.02.002.
  • Ghobeiti Hasab, M.; Seyyed Ebrahimi, S. A.; Badiei, A. Effect of different fuels on the strontium hexaferrite nanopowder synthesized by a surfactant-assisted sol–gel auto-combustion method. J. Non-Cryst. Solids 2007, 353, 814–816. DOI: 10.1016/j.jnoncrysol.2006.12.048.
  • Alange, R. C.; Khirade, P. P.; Birajdar, S. D.; Jadhav, K. M. Influence of Al–Cr co-substitution on physical properties of strontium hexaferrite nanoparticles synthesized by sol–gel auto combustion method. J. Mater. Sci: Mater. Electron. 2017, 28, 407–417. DOI: 10.1007/s10854-016-5537-7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.