1,070
Views
47
CrossRef citations to date
0
Altmetric
Review

An overview of the plant-mediated synthesis of zinc oxide nanoparticles and their antimicrobial potential

, , , , , & show all
Pages 257-271 | Received 13 Feb 2019, Accepted 09 Dec 2019, Published online: 08 Jan 2020

References

  • Baker-Austin, C.; Wright, M. S.; Stepanauskas, R.; McArthur, J. V. Co-Selection of Antibiotic and Metal Resistance. Trends Microbiol. 2006, 14, 176–182. DOI: 10.1016/j.tim.2006.02.006.
  • Rai, M. K.; Deshmukh, S. D.; Ingle, A. P.; Gade, A. K. Silver Nanoparticles: The Powerful Nanoweapon Against Multidrug-Resistant Bacteria. J. Appl. Microbiol. 2012, 112, 841–852. DOI: 10.1111/j.1365-2672.2012.05253.x.
  • Pelgrift, R. Y.; Friedman, A. J. Nanotechnology as a Therapeutic Tool to Combat Microbial Resistance. Adv. Drug. Deliv. Rev. 2013, 65, 1803–1815. DOI: 10.1016/j.addr.2013.07.011.
  • Hranisavljevic, J.; Dimitrijevic, N. M.; Wurtz, G. A.; Wiederrecht, G. P. Photoinduced Charge Separation Reactions of J-Aggregates Coated on Silver Nanoparticles. J. Am. Chem. Soc. 2002, 124, 4536–4537. DOI: 10.1021/ja012263e.
  • Herrera, M.; Carrion, P.; Baca, P.; Liebana, J.; Castillo, A. In Vitro Antibacterial Activity of Glass-Ionomer Cements. Microbios 2001, 104, 141–148.
  • Feng, Q. L.; Wu, J.; Chen, G. Q.; Cui, F. Z.; Kim, T. N.; Kim, J. O. A Mechanistic Study of the Antibacterial Effect of Silver Ions on Escherichia coli and Staphylococcus aureus. J. Biomed. Mater. Res. 2000, 52, 662–668. DOI: 10.1002/1097-4636(20001215)52:4<662::AID-JBM10>3.0.CO;2-3.
  • Fortner, J. D.; Lyon, D. Y.; Sayes, C. M.; Boyd, A. M.; Falkner, J. C.; Hotze, E. M.; Alemany, L. B.; Tao, Y. J.; Guo, W.; Ausman, K. D.; et al. C60 in Water: nanocrystal Formation and Microbial Response. Environ. Sci. Technol. 2005, 39, 4307–4316. DOI: 10.1021/es048099n.
  • Wu, X.; Liu, H.; Liu, J.; Haley, K. N.; Treadway, J. A.; Larson, J. P.; Ge, N.; Peale, F.; Bruchez, M. P. Immunofluorescent Labeling of Cancer Marker Her2 and Other Cellular Targets with Semiconductor Quantum Dots. Nat Biotechnol. 2003, 21, 41–46. DOI: 10.1038/nbt764.
  • Gunalan, S.; Sivaraj, R.; Rajendran, V. Green Synthesized ZnO Nanoparticles against Bacterial and Fungal Pathogens. Prog. Nat. Sci.: Mater. International 2012, 22, 693–700. DOI: 10.1016/j.pnsc.2012.11.015.
  • Sungkaworn, T.; Triampo, W.; Nalakarn, P.; Triampo, D.; Tang, I.; Lenbury, Y.; Picha, P. The Effects of TiO2 Nanoparticles on Tumor Cell Colonies: Fractal Dimension and Morphological Properties. World Academy of Science, Engineering and Technology, International Journal of Medical. Health, Biomed., Bioeng. Pharm. Eng. 2008, 2, 20–27.
  • Huh, A. J.; Kwon, Y. J. “Nanoantibiotics”: a New Paradigm for Treating Infectious Diseases Using Nanomaterials in the Antibiotics Resistant Era. J. Control Release 2011, 156, 128–145. DOI: 10.1016/j.jconrel.2011.07.002.
  • Ul-Islam, M.; Shehzad, A.; Khan, S.; Khattak, W.; Ullah, M.; Park, J. Antimicrobial and Biocompatible Properties of Nanomaterials. J. Nanosci. Nanotech. 2014, 14, 780–791. DOI: 10.1166/jnn.2014.8761.
  • Oprea, O.; Andronescu, E.; Ficai, D.; Ficai, A.; N Oktar, F.; Yetmez, M. ZnO Applications and Challenges. Curr Organic Chem. 2014, 18, 192–203. DOI: 10.2174/13852728113176660143.
  • Ingle, A.; Gade, A.; Pierrat, S.; Sonnichsen, C.; Rai, M. Mycosynthesis of Silver Nanoparticles Using the Fungus Fusarium acuminatum and Its Activity against Some Human Pathogenic Bacteria. Curr. Nanosci. 2008, 4, 141–144. DOI: 10.2174/157341308784340804.
  • Duran, N.; Marcato, P. D.; Alves, O. L.; Souza, G. I.; Esposito, E. Mechanistic Aspects of Biosynthesis of Silver Nanoparticles by Several Fusarium oxysporum Strains. J. Nanobiotechnol. 2005, 3, 8 (2005). doi:10.1186/1477-3155-3-8.
  • Wahid, F.; Ul-Islam, M.; Khan, R.; Khan, T.; Khattak, W. A.; Hwang, K. H.; Park, J. S.; Chang, S. C.; Kim, Y. Y. Stimulatory Effects of Zinc Oxide Nanoparticles on Visual Sensitivity and Electroretinography b-Waves in the Bullfrog Eye. J. Biomed. Nanotechnol. 2013, 9, 1408–1415. DOI: 10.1166/jbn.2013.1617.
  • Shah, N.; Claessyns, F.; Rimmer, S.; Arain, M. B.; Rehan, T.; Wazwaz, A.; Ahmad, M. W.; Ul-Islam, M. Effective Role of Magnetic Core-Shell Nanocomposites in Removing Organic and Inorganic Wastes from Water. Recent Patents Nanotechnol. 2016, 10, 202–212. DOI: 10.2174/1872210510666160429145524.
  • Taylor, P. L.; Ussher, A. L.; Burrell, R. E. Impact of Heat on Nanocrystalline Silver Dressings. Part I: Chemical and Biological Properties. Biomaterials 2005, 26, 7221–7229. DOI: 10.1016/j.biomaterials.2005.05.040.
  • Reddy, K. M.; Feris, K.; Bell, J.; Wingett, D. G.; Hanley, C.; Punnoose, A. Selective Toxicity of Zinc Oxide Nanoparticles to Prokaryotic and Eukaryotic Systems. Appl. Phys. Lett. 2007, 90, 213902–2139023. DOI: 10.1063/1.2742324.
  • Thakkar, K. N.; Mhatre, S. S.; Parikh, R. Y. Biological Synthesis of Metallic Nanoparticles. Nanomedicine 2010, 6, 257–262. DOI: 10.1016/j.nano.2009.07.002.
  • Singhal, G.; Bhavesh, R.; Kasariya, K.; Sharma, A. R.; Singh, R. P. Biosynthesis of Silver Nanoparticles Using Ocimum Sanctum (Tulsi) Leaf Extract and Screening Its Antimicrobial Activity. J. Nanopart. Res. 2011, 13, 2981–2988. DOI: 10.1007/s11051-010-0193-y.
  • Hudlikar, M.; Joglekar, S.; Dhaygude, M.; Kodam, K. Latex-Mediated Synthesis of ZnS Nanoparticles: green Synthesis Approach. J. Nanopart. Res. 2012, 14, 1–6. DOI: 10.1007/s11051-012-0865-x.
  • Kalishwaralal, K.; Deepak, V.; Ram Kumar Pandian, S.; Kottaisamy, M.; BarathmaniKanth, S.; Kartikeyan, B.; Gurunathan, S. Biosynthesis of Silver and Gold Nanoparticles Using Brevibacterium casei. Colloids Surf B: Biointerfaces 2010, 77, 257–262. DOI: 10.1016/j.colsurfb.2010.02.007.
  • Senapati, S.; Ahmad, A.; Khan, M. I.; Sastry, M.; Kumar, R. Extracellular Biosynthesis of Bimetallic Au-Ag Alloy Nanoparticles. Small 2005, 1, 517–520. DOI: 10.1002/smll.200400053.
  • Klaus, T.; Joerger, R.; Olsson, E.; Granqvist, C. G. Silver-Based Crystalline Nanoparticles, Microbially Fabricated. Proc. Nat. Acad. Sci. USA 1999, 96, 13611–13614. DOI: 10.1073/pnas.96.24.13611.
  • Bansal, V.; Rautaray, D.; Ahmad, A.; Sastry, M. Biosynthesis of Zirconia Nanoparticles Using the Fungus Fusarium oxysporum. J. Mater. Chem. 2004, 14, 3303–3305. DOI: 10.1039/b407904c.
  • Bhattacharya, D.; Gupta, R. K. Nanotechnology and Potential of Microorganisms. Crit. Rev. Biotechnol. 2005, 25, 199–204. DOI: 10.1080/07388550500361994.
  • Govindaraju, K.; Basha, S. K.; Kumar, V. G.; Singaravelu, G. Silver, Gold and Bimetallic Nanoparticles Production Using Single-Cell Protein (Spirulina platensis) Geitler. J. Mater. Sci. 2008, 43, 5115–5122. DOI: 10.1007/s10853-008-2745-4.
  • Scarano, G.; Morelli, E. Characterization of Cadmium- and Lead-Phytochelatin Complexes Formed in a Marine Microalga in Response to Metal Exposure. Biometals 2002, 15, 145–151.
  • Lengke, M. F.; Fleet, M. E.; Southam, G. Biosynthesis of Silver Nanoparticles by Filamentous Cyanobacteria from a Silver(I) nitrate Complex. Langmuir 2007, 23, 2694–2699. DOI: 10.1021/la0613124.
  • Kowshik, M.; Deshmukh, N.; Vogel, W.; Urban, J.; Kulkarni, S. K.; Paknikar, K. M. Microbial Synthesis of Semiconductor CdS Nanoparticles, Their Characterization, and Their Use in the Fabrication of an Ideal Diode. Biotechnol. Bioeng. 2002, 78, 583–588. DOI: 10.1002/bit.10233.
  • Rautaray, D.; Ahmad, A.; Sastry, M. Biosynthesis of CaCO3 Crystals of Complex Morphology Using a Fungus and an Actinomycete. J. Am. Chem. Soc. 2003, 125, 14656–14657. DOI: 10.1021/ja0374877.
  • Anshup, A.; Venkataraman, J. S.; Subramaniam, C.; Kumar, R. R.; Priya, S.; Kumar, T. R.; Omkumar, R. V.; John, A.; Pradeep, T. Growth of Gold Nanoparticles in Human Cells. Langmuir 2005, 21, 11562–11567. DOI: 10.1021/la0519249.
  • Gericke, M.; Pinches, A. Microbial Production of Gold Nanoparticles. Gold Bull. 2006, 39, 22–28. DOI: 10.1007/BF03215529.
  • Akbar, S.; Haleem, K. S.; Tauseef, I.; Rehman, W.; Ali, N.; Hasan, M. Raphanus sativus Mediated Synthesis, Characterization and Biological Evaluation of Zinc Oxide Nanoparticles. Nanosci. Nanotechnol. Lett. 2017, 9, 2005–2012. DOI: 10.1166/nnl.2017.2550.
  • Balraj, B.; Senthilkumar, N.; Siva, C.; Krithikadevi, R.; Julie, A.; Potheher, I. V.; Arulmozhi, M. Synthesis and Characterization of Zinc Oxide Nanoparticles Using Marine Streptomyces sp. with Its Investigations on Anticancer and Antibacterial Activity. Res. Chem. Intermed. 2017, 43, 2367–2376. DOI: 10.1007/s11164-016-2766-6.
  • Kundu, D.; Hazra, C.; Chatterjee, A.; Chaudhari, A.; Mishra, S. Extracellular Biosynthesis of Zinc Oxide Nanoparticles Using Rhodococcus pyridinivorans NT2: Multifunctional Textile Finishing, Biosafety Evaluation and in Vitro Drug Delivery in Colon Carcinoma. J. Photochem. Photobiol B: Biol. 2014, 140, 194–204. DOI: 10.1016/j.jphotobiol.2014.08.001.
  • Hussain, W.; Haleem, K. S.; Khan, I.; Tauseef, I.; Qayyum, S.; Ahmed, B.; Riaz, M. N. Medicinal Plants: A Repository of Antiviral Metabolites. Future Virol. 2017, 12, 299–308. DOI: 10.2217/fvl-2016-0110.
  • Singh, P.; Kim, Y.-J.; Zhang, D.; Yang, D.-C. Biological Synthesis of Nanoparticles from Plants and Microorganisms. Trends Biotechnol. 2016, 34, 588–599. DOI: 10.1016/j.tibtech.2016.02.006.
  • Gan, P. P.; Li, S. F. Y. Potential of Plant as a Biological Factory to Synthesize Gold and Silver Nanoparticles and Their Applications. Rev. Environ. Sci. Biotechnol. 2012, 11, 169–206. DOI: 10.1007/s11157-012-9278-7.
  • Geethalakshmi, R.; Sarada, D. Gold and Silver Nanoparticles from Trianthema Decandra: synthesis, Characterization, and Antimicrobial Properties. Int. J. Nanomed. 2012, 7, 5375–5384. [Database] DOI: 10.2147/IJN.S36516.
  • Kouvaris, P.; Delimitis, A.; Zaspalis, V.; Papadopoulos, D.; Tsipas, S. A.; Michailidis, N. Green Synthesis and Characterization of Silver Nanoparticles Produced Using Arbutus Unedo Leaf Extract. Mater. Lett. 2012, 76, 18–20. DOI: 10.1016/j.matlet.2012.02.025.
  • Parashar, V.; Parashar, R.; Sharma, B.; Pandey, A. C. Parthenium Leaf Extract Mediated Synthesis of Silver Nanoparticles: A Novel Approach towards Weed Utilization. Digest J. Nanomater. Biostruct. 2009, 4, 45–50.
  • Kulkarni, N.; Muddapur, U. Biosynthesis of Metal Nanoparticles: A Review. J. Nanotechnol. 2014, 2014, 1–8. DOI: 10.1155/2014/510246.
  • Glusker, J.; Katz, A.; C., Rigaku J, B. 16, 8 − 16.[Cas]. Metal Ions Biol. Syst. Glusker, Jenny P 1999, 8–16.
  • Si, S.; Mandal, T. K. Tryptophan-Based Peptides to Synthesize Gold and Silver Nanoparticles: A Mechanistic and Kinetic Study. Chem. Eur. J. 2007, 13, 3160–3168. DOI: 10.1002/chem.200601492.
  • Kim, J. H.; Cho, H.; Ryu, S. E.; Choi, M. U. Effects of Metal Ions on the Activity of Protein Tyrosine Phosphatase VHR: highly Potent and Reversible Oxidative Inactivation by Cu2+ Ion. Arch Biochem Biophys 2000, 382, 72–80. DOI: 10.1006/abbi.2000.1996.
  • Makarov, V.; Love, A.; Sinitsyna, O.; Makarova, S.; Yaminsky, I.; Taliansky, M.; Kalinina, N. Green” Nanotechnologies: synthesis of Metal Nanoparticles Using Plants. Acta Naturae (англоязычная версия) 2014, 6, (1– 20.
  • Singh, R. P.; Shukla, V. K.; Yadav, R. S.; Sharma, P. K.; Singh, P. K.; Pandey, A. C. Biological Approach of Zinc Oxide Nanoparticles Formation and Its Characterization. Adv. Mater. Lett. 2011, 2, 313–317.
  • Sangeetha, G.; Rajeshwari, S.; Venckatesh, R. Green Synthesis of Zinc Oxide Nanoparticles by Aloe Barbadensis Miller Leaf Extract: Structure and Optical Properties. Mater. Res. Bull. 2011, 46, 2560–2566. DOI: 10.1016/j.materresbull.2011.07.046.
  • Gnanasangeetha, D.; SaralaThambavani, D. One Pot Synthesis of Zinc Oxide Nanoparticles via Chemical and Green Method. Res. J. Mater. Sci. 2013, 2320, 6055.
  • Gnanasangeetha, D.; Thambavani, D. S. Biogenic Production of Zinc Oxide Nanoparticles Using Acalypha Indica. J. Chem., Biol. Phys. Sci. 2013, 4, 238.
  • Vidya, C.; Hiremath, S.; Chandraprabha, M.; Antonyraj, I.; Gopal, V.; Jai, A.; Bansal, K. Green Synthesis of ZnO Nanoparticles by Calotropis Gigantea. Int. J. Curr. Eng. Technol. 2013, 1, 118–120.
  • Nagarajan, S.; Kuppusamy, K. A. Extracellular Synthesis of Zinc Oxide Nanoparticle Using Seaweeds of Gulf of Mannar, India. J. Nanobiotechnol. 2013, 11, 39. DOI: 10.1186/1477-3155-11-39.
  • Ramesh, P.; Rajendran, A.; Meenakshisundaram, M. Green Syntheis of Zinc Oxide Nanoparticles Using Flower Extract Cassia Auriculata. J. NanoSci. NanoTechnol. 2014, 2, 41–45. DOI: 10.1155/2017/8348507.
  •  Ambika, S.; Sundrarajan, M. Synthesis of &Beta;-Cyclodextrin/Zno Nanocomposites and Its Improved Antibacterial Activity on Cotton FABRIC. World J Pharm Pharm Sci., 2014, 3, 751–761.
  • Senthilkumar, S.; Sivakumar, T. Green Tea (Camellia Sinensis) Mediated Synthesis of Zinc Oxide (ZnO) Nanoparticles and Studies on Their Antimicrobial Activities. Int. J. Pharm. Pharm. Sci. 2014, 6, 461–465.
  • Awwad, A. M.; Albiss, B.; Ahmad, A. L. Green Synthesis, Characterization and Optical Properties of Zinc Oxide Nanosheets Using Olea Europea Leaf Extract. Adv. Mater. Lett. 2014, 5, 520–524. DOI: 10.5185/amlett.2014.5575.
  • Bhumi, G.; Savithramma, N. Biological Synthesis of Zinc Oxide Nanoparticles from Catharanthus Roseus (L.) G. Don. Leaf Extract and Validation for Antibacterial Activity. Int. J. Drug Dev. Res. 2014, 6, 208–214.
  • Shekhawat, M.; Ravindran, C.; Manokari, M. A Biomimetic Approach Towards Synthesis of Zinc Oxide Nanoparticles Using Hybanthus enneaspermus (L.) F. Muell. Int J. Trop. Plant Res, 2014, 1, 55–59.
  • Devi, R. S.; Gayathri, R. Green Synthesis of Zinc Oxide Nanoparticles by Using Hibiscus Rosa-Sinensis. Int. J. Curr. Eng. Technol. 2014, 4, 2444–2446.
  • Bhatt, P. V.; Vyas, B. R. M. Screening and Characterization of Plant Growth and Health Promoting Rhizobacteria. Int. J. Curr. Microbiol. Appl. Sci. 2014, 3, 139–155.
  • Shekhawat, M.; Manokari, M. Biogenesis of Zinc Oxide Nanoparticles Using Morinda Pubescens JE Smith Extracts and Their Characterization. Int. J. BioEng. Technol. 2014, 5, 1–6.
  • Sivaraj, R.; Rahman, P. K.; Rajiv, P.; Venckatesh, R. Biogenic Zinc Oxide Nanoparticles Synthesis Using Tabernaemontana Divaricate Leaf Extract and Its Anticancer Activity against MCF-7 Breast Cancer Cell Lines. Int. Conf. Adv. Agric. Biol. Environ. Sci., 2014, 1, 83-85. DOI:10.15242/IICBE.C1014032
  • Divyapriya, S.; Sowmia, C.; Sasikala, S. Synthesis of Zinc Oxide Nanoparticles and Antimicrobial Activity of Murraya Koeiniggi. World J. Pharm. Pharm. Sci. 2014, 3, 1635–1645.
  • Kooluru, N. Sharada, Green Synthesis of Zinc Oxide Nano Particles Using Flower Extract Cassia Densistipulata Taub. Int. J. Eng. Res. Dev. 2014, 10, 16–19.
  • Suresh, D.; Nethravathi, P.; Rajanaika, H.; Nagabhushana, H.; Sharma, S. Green Synthesis of Multifunctional Zinc Oxide (ZnO) Nanoparticles Using Cassia Fistula Plant Extract and Their Photodegradative, Antioxidant and Antibacterial Activities. Mat. Sci. Semicond. Process. 2015, 31, 446–454. DOI: 10.1016/j.mssp.2014.12.023.
  • Shekhawat, M.; Ravindran, C.; Manokari, M. A Green Approach to Synthesize the Zinc Oxide Nanoparticles Using Aqueous Extracts of Ficus Benghalensis L. Int. J. BioSci., Agric. Technol. 2015, 6, 1–5.
  • Dobrucka, R.; Długaszewska, J. Biosynthesis and Antibacterial Activity of ZnO Nanoparticles Using Trifolium pratense Flower Extract. Saudi J. Biol. Sci. 2016, 23, 517–523. DOI: 10.1016/j.sjbs.2015.05.016.
  •  Anbukkarasi, V.; Srinivasan, R.; Elangovan, N. Antimicrobial Activity of Green Synthesized Zinc Oxide Nanoparticles from Emblica Officinalis. Int. J. Pharm. Sci. Rev. Res, 2015, 33, 110–115.
  • Bala, N.; Saha, S.; Chakraborty, M.; Maiti, M.; Das, S.; Basu, R.; Nandy, P. Green Synthesis of Zinc Oxide Nanoparticles Using Hibiscus Subdariffa Leaf Extract: effect of Temperature on Synthesis, Anti-Bacterial Activity and Anti-Diabetic Activity. RSC Adv. 2015, 5, 4993–5003. DOI: 10.1039/C4RA12784F.
  •  Manokari, M.; Shekhawat, M. S. Biogenesis of Zinc Oxide Nanoparticles Using Aqueous Extracts of Hemidesmus Indicus (L.) R. Br. Int. J. Appl. Microbiol. Biotechnol. Res., 2015, 1, 20–24.
  •  Mishra, V.; Sharma, R. Green Synthesis of Zinc Oxide Nanoparticles Using Fresh Peels Extract of Punica Granatum and Its Antimicrobial Activities. Int. J. Pharm. Res. Health Sci., 2015, 3, 694–699.
  • Shekhawat, M.; Ravindran, C.; Manokari, M. An Ecofriendly Method for the Synthesis of Zinc Oxide Nanoparticles Using Lawsonia Inermis L. Aqueous Extracts. Int. J.Innov. 2015, 5, 1–4.
  • Manokari, M.; Ravindran, C.; Shekhawat, M. S. Biosynthesis of Zinc Oxide Nanoparticles Using Melia Azedarach L. extracts and Their Characterization. Int. J. Pharm. Sci. Res. 2016, 1, 31–36.
  • Manokari, M.; Ravindran, C.; Shekhawat, M. Production of Zinc Oxide Nanoparticles Using Aqueous Extracts of a Medicinal Plant Micrococca Mercurialis. (L.) Benth. World Sci. News 2016, 30, 117–128.
  • Manokari, M.; Shekhawat, M. S. Production of Zinc Oxide Nanoparticles Using Extracts of Passiflora Edulis Sims. f. flavicarpa Deg. World Sci. News 2016, 47, 267.
  • Ravindran, C.; Manokari, M.; Shekhawat, M. S. Biogenic Production of Zinc Oxide Nanoparticles from Aqueous Extracts of Duranta Erecta L. World Sci.News 2016, 28, 30.
  • Harris, A. T.; Bali, R. On the Formation and Extent of Uptake of Silver Nanoparticles by Live Plants. J. Nanopart. Res. 2008, 10, 691–695. DOI: 10.1007/s11051-007-9288-5.
  • Khan, M.; Khan, M.; Adil, S. F.; Tahir, M. N.; Tremel, W.; Alkhathlan, H. Z.; Al-Warthan, A.; Siddiqui, M. Green Synthesis of Silver Nanoparticles Mediated by Pulicaria Glutinosa Extract. Int. J. Nanomed. 2013, 8, 1507–1516. DOI: 10.2147/IJN.S43309.
  • Li, S.; Shen, Y.; Xie, A.; Yu, X.; Qiu, L.; Zhang, L.; Zhang, Q. Green Synthesis of Silver Nanoparticles Using Capsicum Annuum L. extract. Green Chem. 2007, 9, 852–858. DOI: 10.1039/b615357g.
  • Armendariz, V.; Herrera, I.; Peralta-Videa, J. R.; Jose-Yacaman, M.; Troiani, H.; Santiago, P.; Gardea-Torresdey, J. L. Size Controlled Gold Nanoparticle Formation by Avena Sativa Biomass: use of Plants in Nanobiotechnology. J. Nanoparticle Res. 2004, 6, 377–382. DOI: 10.1007/s11051-004-0741-4.
  • Sathishkumar, M.; Sneha, K.; Won, S.; Cho, C.-W.; Kim, S.; Yun, Y.-S. Cinnamon Zeylanicum Bark Extract and Powder Mediated Green Synthesis of Nano-Crystalline Silver Particles and Its Bactericidal Activity. Colloids Surf B: Biointerfaces 2009, 73, 332–338. DOI: 10.1016/j.colsurfb.2009.06.005.
  • Bar, H.; Bhui, D. K.; Sahoo, G. P.; Sarkar, P.; Pyne, S.; Misra, A. Green Synthesis of Silver Nanoparticles Using Seed Extract of Jatropha Curcas. Colloids Surf A: Physicochem. Eng. Aspects 2009, 348, 212–216. DOI: 10.1016/j.colsurfa.2009.07.021.
  • Mude, N.; Ingle, A.; Gade, A.; Rai, M. Synthesis of Silver Nanoparticles Using Callus Extract of Carica Papaya—a First Report. J. Plant Biochem. Biotechnol. 2009, 18, 83–86. DOI: 10.1007/BF03263300.
  • Saha, R.; Subramani, K.; Raju, S. A. K. P. M.; Rangaraj, S.; Venkatachalam, R. Psidium Guajava Leaf Extract-Mediated Synthesis of ZnO Nanoparticles under Different Processing Parameters for Hydrophobic and Antibacterial Finishing over Cotton Fabrics. Prog. Organic Coat. 2018, 124, 80–91. DOI: 10.1016/j.porgcoat.2018.08.004.
  • Khatami, M.; Alijani, H. Q.; Heli, H.; Sharifi, I. Rectangular Shaped Zinc Oxide Nanoparticles: Green Synthesis by Stevia and Its Biomedical Efficiency. Ceram. Int. 2018, 44, 15596–15602. DOI: 10.1016/j.ceramint.2018.05.224.
  • Suresh, J.; Pradheesh, G.; Alexramani, V.; Sundrarajan, M.; Hong, S. I. Green Synthesis and Characterization of Zinc Oxide Nanoparticle Using Insulin Plant (Costus Pictus D. Don) and Investigation of Its Antimicrobial as Well as Anticancer Activities. Adv. Nat. Sci: Nanosci. Nanotechnol. 2018, 9, 015008. DOI: 10.1088/2043-6254/aaa6f1.
  • Ngoepe, N.; Mbita, Z.; Mathipa, M.; Mketo, N.; Ntsendwana, B.; Hintsho-Mbita, N. Biogenic Synthesis of ZnO Nanoparticles Using Monsonia Burkeana for Use in Photocatalytic, Antibacterial and Anticancer Applications. Ceram. Int. 2018, 44, 16999–17006. DOI: 10.1016/j.ceramint.2018.06.142.
  • Ogunyemi, S. O.; Abdallah, Y.; Zhang, M.; Fouad, H.; Hong, X.; Ibrahim, E.; Masum, M. M. I.; Hossain, A.; Mo, J.; Li, B. Green Synthesis of Zinc Oxide Nanoparticles Using Different Plant Extracts and Their Antibacterial Activity against Xanthomonas oryzae pv. oryzae. Artif. Cells, Nanomed., Biotechnol. 2019, 47, 341–352. DOI: 10.1080/21691401.2018.1557671.
  • Szabó, T.; Németh, J.; Dékány, I. Zinc Oxide Nanoparticles Incorporated in Ultrathin Layer Silicate Films and Their Photocatalytic Properties. Colloids Surf. A: Physicochem. Eng. Aspects 2003, 230, 23–35. DOI: 10.1016/j.colsurfa.2003.09.010.
  • de Romaña, D. L.; Lönnerdal, B.; Brown, K. H. Absorption of Zinc from Wheat Products Fortified with Iron and Either Zinc Sulfate or Zinc Oxide. Amer. J Clin. Nutr. 2003, 78, 279–283. DOI: 10.1093/ajcn/78.2.279.
  • Smith, J.; Tokach, M.; Goodband, R.; Nelssen, J.; Richert, B. Effects of the Interrelationship between Zinc Oxide and Copper Sulfate on Growth Performance of Early-Weaned Pigs. J. Animal Sci 1997, 75, 1861–1866. DOI: 10.2527/1997.7571861x.
  • Mitchnick, M. A.; Fairhurst, D.; Pinnell, S. R. Microfine Zinc Oxide (Z-Cote) as a Photostable UVA/UVB Sunblock Agent. J. Amer. Acad. Dermatol. 1999, 40, 85–90. DOI: 10.1016/S0190-9622(99)70532-3.
  • Yu, S.; Yuen, C.; Lau, S.; Wang, Y.; Lee, H.; Tay, B. Ultraviolet Amplified Spontaneous Emission from Zinc Oxide Ridge Waveguides on Silicon Substrate. Appl. Phys. Lett. 2003, 83, 4288–4290. DOI: 10.1063/1.1629784.
  • Gao, P. X.; Ding, Y.; Mai, W.; Hughes, W. L.; Lao, C.; Wang, Z. L. Conversion of Zinc Oxide Nanobelts into Superlattice-Structured Nanohelices. Science 2005, 309, 1700–1704. DOI: 10.1126/science.1116495.
  • Jayaseelan, C.; Rahuman, A. A.; Kirthi, A. V.; Marimuthu, S.; Santhoshkumar, T.; Bagavan, A.; Gaurav, K.; Karthik, L.; Rao, K. B. Novel Microbial Route to Synthesize ZnO Nanoparticles Using Aeromonas hydrophila and Their Activity against Pathogenic Bacteria and Fungi. Spectrochim Acta A: Molec Biomolec Spectrosc. 2012, 90, 78–84. DOI: 10.1016/j.saa.2012.01.006.
  • Sawai, J.; Igarashi, H.; Hashimoto, A.; Kokugan, T.; Shimizu, M. Effect of Particle Size and Heating Temperature of Ceramic Powders on Antibacterial Activity of Their Slurries. J. Chem. Eng. Japan.1996, 29, 251–256. DOI: 10.1252/jcej.29.251.
  • Yamamoto, O. Influence of Particle Size on the Antibacterial Activity of Zinc Oxide. Int. J. Inorganic Mater. 2001, 3, 643–646. DOI: 10.1016/S1466-6049(01)00197-0.
  • Sawai, J. Quantitative Evaluation of Antibacterial Activities of Metallic Oxide Powders (ZnO, MgO and CaO) by Conductimetric Assay. J. Microbiol. Methods 2003, 54, 177–182. DOI: 10.1016/S0167-7012(03)00037-X.
  • Driessen, M.; Miller, T.; Grassian, V. Photocatalytic Oxidation of Trichloroethylene on Zinc Oxide: characterization of Surface-Bound and Gas-Phase Products and Intermediates with FT-IR Spectroscopy. J. Molec Catal A: Chem. 1998, 131, 149–156. DOI: 10.1016/S1381-1169(97)00262-8.
  • Zhang, L.; Ding, Y.; Povey, M.; York, D. ZnO Nanofluids–a Potential Antibacterial Agent. Prog. Nat. Sci. 2008, 18, 939–944. DOI: 10.1016/j.pnsc.2008.01.026.
  • Sehili, T.; Boule, P.; Lemaire, J. Photocatalysed Transformation of Chloroaromatic Derivatives on Zinc Oxide II: Dichlorobenzenes. J. Photochem. Photobiol. A: Chem. 1989, 50, 103–116. DOI: 10.1016/1010-6030(89)80024-3.
  • Villaseñor, J.; Reyes, P.; Pecchi, G. Photodegradation of Pentachlorophenol on ZnO. J. Chem. Technol. Biotechnol. 1998, 72, 105–110. DOI: 10.1002/(SICI)1097-4660(199806)72:2<105::AID-JCTB883>3.0.CO;2-0.
  • Jones, N.; Ray, B.; Ranjit, K. T.; Manna, A. C. Antibacterial Activity of ZnO Nanoparticle Suspensions on a Broad Spectrum of Microorganisms. FEMS Microbiol. Lett. 2008, 279, 71–76. DOI: 10.1111/j.1574-6968.2007.01012.x.
  • Tam, K.; Djurišić, A.; Chan, C.; Xi, Y.; Tse, C.; Leung, Y.; Chan, W.; Leung, F.; Au, D. Antibacterial Activity of ZnO Nanorods Prepared by a Hydrothermal Method. Thin Solid Films 2008, 516, 6167–6174. DOI: 10.1016/j.tsf.2007.11.081.
  • Zhou, J.; Xu, N. S.; Wang, Z. L. Dissolving Behavior and Stability of ZnO Wires in Biofluids: A Study on Biodegradability and Biocompatibility of ZnO Nanostructures. Adv. Mater. 2006, 18, 2432–2435. DOI: 10.1002/adma.200600200.
  • Roselli, M.; Finamore, A.; Garaguso, I.; Britti, M. S.; Mengheri, E. Zinc Oxide Protects Cultured Enterocytes from the Damage Induced by Escherichia coli. Ji Nutr. 2003, 133, 4077–4082. DOI: 10.1093/jn/133.12.4077.
  • Yamada, H.; Suzuki, K.; Koizumi, S. Gene Expression Profile in Human Cells Exposed to Zinc. J. Toxicol. Sci. 2007, 32, 193–196. DOI: 10.2131/jts.32.193.
  • Sawai, J.; Yoshikawa, T. Quantitative Evaluation of Antifungal Activity of Metallic Oxide Powders (MgO, CaO and ZnO) by an Indirect Conductimetric Assay. J. Appl. Microbiol. 2004, 96, 803–809. DOI: 10.1111/j.1365-2672.2004.02234.x.
  • Waclawik, E. R.; Chang, J.; Ponzoni, A.; Concina, I.; Zappa, D.; Comini, E.; Motta, N.; Faglia, G.; Sberveglieri, G. Functionalised Zinc Oxide Nanowire Gas Sensors: Enhanced NO2 Gas Sensor Response by Chemical Modification of Nanowire Surfaces. Beilstein J. Nanotechnol. 2012, 3, 368–377. DOI: 10.3762/bjnano.3.43.
  • Xu, J.; Pan, Q.; Shun, Y.; Tian, Z. Grain Size Control and Gas Sensing Properties of ZnO Gas Sensor. Sensor. Actuat. B: Chem. 2000, 66, 277–279. DOI: 10.1016/S0925-4005(00)00381-6.
  • Wang, Z. L. Zinc Oxide Nanostructures: growth, Properties and Applications. J. Phys: Condens. Matter. 2004, 16, R829. DOI: 10.1088/0953-8984/16/25/R01.
  • Cross, S. E.; Innes, B.; Roberts, M. S.; Tsuzuki, T.; Robertson, T. A.; McCormick, P. Human Skin Penetration of Sunscreen Nanoparticles: In-Vitro Assessment of a Novel Micronized Zinc Oxide Formulation. Skin Pharmacol. Physiol. 2007, 20, 148–154. DOI: 10.1159/000098701.
  • Grigorjeva, L.; Millers, D.; Grabis, J.; Monty, C.; Kalinko, A.; Smits, K.; Pankratov, V.; Lojkowski, W. Luminescence Properties of ZnO Nanocrystals and Ceramics. IEEE Trans. Nucl. Sci. 2008, 55, 1551–1555. DOI: 10.1109/TNS.2008.921931.
  • Ko, Y. H.; Lee, S. H.; Yu, J. S. Zinc Oxide Nanostructures for Optoelectronic and Energy Devices. SPIE Newsroom. 2014. https://spie.org/news/5270-zinc-oxide-nanostructures-for-optoelectronic-and-energy-devices?SSO=1 (Published 09 January 2014: accessed 04 January 2020).DOI: 10.1117/2.1201312.005270.
  • Gordillo, G. New Materials Used as Optical Window in Thin Film Solar Cells. Surf. Rev. Lett. 2002, 09, 1675–1680. DOI: 10.1142/S0218625X02004207.
  • Xiong, H. M.; Wang, Z. D.; Liu, D. P.; Chen, J. S.; Wang, Y. G.; Xia, Y. Y. Bonding Polyether onto ZnO Nanoparticles: An Effective Method for Preparing Polymer Nanocomposites with Tunable Luminescence and Stable Conductivity. Adv. Funct. Mater. 2005, 15, 1751–1756. DOI: 10.1002/adfm.200500167.
  • Beek, W. J.; Wienk, M. M.; Janssen, R. A. Efficient Hybrid Solar Cells from Zinc Oxide Nanoparticles and a Conjugated Polymer. Adv. Mater. 2004, 16, 1009–1013. DOI: 10.1002/adma.200306659.
  • Rajamanickam, D.; Shanthi, M. Photocatalytic Degradation of an Organic Pollutant by Zinc Oxide–Solar Process. Arab. J. Chem. 2012, 9, S1858-S1868. DOI: 10.1016/j.arabjc.2012.05.006.
  • Farouk, A.; Textor, T.; Schollmeyer, E.; Tarbuk, A.; Grancacic, A. M. Sol-Gel-Derived Inorganic-Organic Hybrid Polymers Filled with ZnO Nanoparticles as an Ultraviolet Protection Finish for Textiles. Autex Res. J. 2010, 10, 58–63.
  • Przybyszewska, M.; Zaborski, M. Effect of Ionic Liquids and Surfactants on Zinc Oxide Nanoparticle Activity in Crosslinking of Acrylonitrile Butadiene Elastomer. J. Appl. Polym. Sci. 2010, 116, 155–164. DOI: 10.1002/app.31519.
  • Padmavathy, N.; Vijayaraghavan, R. Enhanced Bioactivity of ZnO Nanoparticles—an Antimicrobial Study. Sci. Technol. Adv. Mater. 2016, 9, 035004. DOI: 10.1088/1468-6996/9/3/035004.
  • Maleki Dizaj, S.; Mennati, A.; Jafari, S.; Khezri, K.; Adibkia, K. Antimicrobial Activity of Carbon-Based Nanoparticles. Adv. Pharm. Bull. 2015, 5, 19–23. DOI: 10.5681/apb.2015.003.
  • Rana, S.; Kalaichelvan, P. Antibacterial Activities of Metal Nanoparticles. Antibacterial Activities of Metal Nanoparticles. 2011, 11, 21–23.
  • Ferracane, J. L. Materials in Dentistry: principles and Applications. Philadelphia:Lippincott Williams & Wilkins: 2001.
  • Van Noort, R.; Barbour, M. E. Introduction to Dental Materials. Edinburgh: Mosby Elsevier: 2013.
  • Harding, F. Breast Cancer: cause, Prevention, Cure. Aylesbury: Tekline Publishing: 2007.
  • Hughes, G.; McLean, N. Zinc Oxide Tape: A Useful Dressing for the Recalcitrant Finger-Tip and Soft-Tissue Injury. Arch. Emerg. Med. 1988, 5, 223–227. DOI: 10.1136/emj.5.4.223.
  • Cho, W. S.; Kang, B. C.; Lee, J. K.; Jeong, J.; Che, J. H.; Seok, S. H. Comparative Absorption, Distribution, and Excretion of Titanium Dioxide and Zinc Oxide Nanoparticles after Repeated Oral Administration. Part. Fibre Toxicol. 2013, 10, 9. DOI: 10.1186/1743-8977-10-9.
  • Ten Cate, J. Contemporary Perspective on the Use of Fluoride Products in Caries Prevention. Br. Dent. J. 2013, 214, 161–167. DOI: 10.1038/sj.bdj.2013.162.
  • Rošin-Grget, K.; Peroš, K.; Šutej, I. The Cariostatic Mechanisms of Fluoride. Acta Med. Acad. 2013, 42, 179–188. DOI: 10.5644/ama2006-124.85.
  • Wang, C.; Liu, L.-L.; Zhang, A.-T.; Xie, P.; Lu, J.-J.; Zou, X.-T. Antibacterial Effects of Zinc Oxide Nanoparticles on Escherichia coli K88. Afr. J. Biotechnol. 2012, 11, 10248–10254.
  • Rasmussen, J. W.; Martinez, E.; Louka, P.; Wingett, D. G. Zinc Oxide Nanoparticles for Selective Destruction of Tumor Cells and Potential for Drug Delivery Applications. Expert Opin. Drug Deliv. 2010, 7, 1063–1077. DOI: 10.1517/17425247.2010.502560.
  • Li, Q.; Chen, S. L.; Jiang, W. C. Durability of Nano ZnO Antibacterial Cotton Fabric to Sweat. J. Appl. Polym. Sci. 2007, 103, 412–416. DOI: 10.1002/app.24866.
  • Saito, M. Antibacterial, Deodorizing, and UV Absorbing Materials Obtained with Zinc Oxide (ZnO) Coated Fabrics. J. Ind. Text. 1993, 23, 150–164. DOI: 10.1177/152808379302300205.
  • Gunalan, S.; Sivaraj, R.; Venckatesh, R. Aloe Barbadensis Miller Mediated Green Synthesis of Mono-Disperse Copper Oxide Nanoparticles: optical Properties. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2012, 97, 1140–1144. DOI: 10.1016/j.saa.2012.07.096.
  • Stoimenov, P. K.; Klinger, R. L.; Marchin, G. L.; Klabunde, K. J. Metal Oxide Nanoparticles as Bactericidal Agents. Langmuir 2002, 18, 6679–6686. DOI: 10.1021/la0202374.
  • Applerot, G.; Lipovsky, A.; Dror, R.; Perkas, N.; Nitzan, Y.; Lubart, R.; Gedanken, A. Enhanced Antibacterial Activity of Nanocrystalline ZnO Due to Increased ROS‐Mediated Cell Injury. Adv. Funct. Mater. 2009, 19, 842–852. DOI: 10.1002/adfm.200801081.
  • Zhang, L.; Jiang, Y.; Ding, Y.; Povey, M.; York, D. Investigation into the Antibacterial Behaviour of Suspensions of ZnO Nanoparticles (ZnO Nanofluids). J. Nanopart. Res. 2007, 9, 479–489. DOI: 10.1007/s11051-006-9150-1.
  • Brayner, R.; Ferrari-Iliou, R.; Brivois, N.; Djediat, S.; Benedetti, M. F.; Fiévet, F. Toxicological Impact Studies Based on Escherichia coli Bacteria in Ultrafine ZnO Nanoparticles Colloidal Medium. Nano Lett. 2006, 6, 866–870. DOI: 10.1021/nl052326h.
  • Abramova, A. V.; Abramov, V. O.; Gedanken, A.; Perelshtein, I.; Bayazitov, V. M. An Ultrasonic Technology for Production of Antibacterial Nanomaterials and Their Coating on Textiles. Beilstein J. Nanotechnol. 2014, 5, 532–536. DOI: 10.3762/bjnano.5.62.
  • Sawai, J.; Shoji, S.; Igarashi, H.; Hashimoto, A.; Kokugan, T.; Shimizu, M.; Kojima, H. Hydrogen Peroxide as an Antibacterial Factor in Zinc Oxide Powder Slurry. J. Ferment. Bioeng. 1998, 86, 521–522. DOI: 10.1016/S0922-338X(98)80165-7.
  • Jalal, R.; Goharshadi, E. K.; Abareshi, M.; Moosavi, M.; Yousefi, A.; Nancarrow, P. ZnO Nanofluids: green Synthesis, Characterization, and Antibacterial Activity. Mater. Chem. Phys. 2010, 121, 198–201. DOI: 10.1016/j.matchemphys.2010.01.020.
  • Espitia, P. J. P.; Soares, N. d F. F.; dos Reis Coimbra, J. S.; de Andrade, N. J.; Cruz, R. S.; Medeiros, E. A. A. Zinc Oxide Nanoparticles: synthesis, Antimicrobial Activity and Food Packaging Applications. Food Bioprocess Technol. 2012, 5, 1447–1464. DOI: 10.1007/s11947-012-0797-6.
  • Raghupathi, K. R.; Koodali, R. T.; Manna, A. C. Size-Dependent Bacterial Growth Inhibition and Mechanism of Antibacterial Activity of Zinc Oxide Nanoparticles. Langmuir 2011, 27, 4020–4028. DOI: 10.1021/la104825u.
  • Stankovic, A.; Dimitrijevic, S.; Uskokovic, D. Influence of Size Scale and Morphology on Antibacterial Properties of ZnO Powders Hydrothemally Synthesized Using Different Surface Stabilizing Agents. Colloids Surf. B: Biointerfaces 2013, 102, 21–28.
  • Hirota, K.; Sugimoto, M.; Kato, M.; Tsukagoshi, K.; Tanigawa, T.; Sugimoto, H. Preparation of Zinc Oxide Ceramics with a Sustainable Antibacterial Activity under Dark Conditions. Ceram. Int. 2010, 36, 497–506. DOI: 10.1016/j.ceramint.2009.09.026.
  • Adams, L. K.; Lyon, D. Y.; Alvarez, P. J. Comparative Eco-Toxicity of Nanoscale TiO 2, SiO 2, and ZnO Water Suspensions. Water Res. 2006, 40, 3527–3532. DOI: 10.1016/j.watres.2006.08.004.
  • Sharma, D.; Rajput, J.; Kaith, B.; Kaur, M.; Sharma, S. Synthesis of ZnO Nanoparticles and Study of Their Antibacterial and Antifungal Properties. Thin Solid Films 2010, 519, 1224–1229. DOI: 10.1016/j.tsf.2010.08.073.
  • Thill, A.; Zeyons, O.; Spalla, O.; Chauvat, F.; Rose, J.; Auffan, M.; Flank, A. M. Cytotoxicity of CeO2 Nanoparticles for Escherichia coli. Environ. Sci. Technol. 2006, 40, 6151–6156. DOI: 10.1021/es060999b.
  • Xie, Y.; He, Y.; Irwin, P. L.; Jin, T.; Shi, X. Antibacterial Activity and Mechanism of Action of Zinc Oxide Nanoparticles Against Campylobacter jejuni. Appl. Environ. Microbiol. 2011, 77, 2325–2331. DOI: 10.1128/AEM.02149-10.
  • Wahab, R.; Mishra, A.; Yun, S.-I.; Hwang, I.; Mussarat, J.; Al-Khedhairy, A. A.; Kim, Y.-S.; Shin, H.-S. Fabrication, Growth Mechanism and Antibacterial Activity of ZnO Micro-Spheres Prepared via Solution Process. Biomass Bioenergy 2012, 39, 227–236. DOI: 10.1016/j.biombioe.2012.01.005.
  • Premanathan, M.; Karthikeyan, K.; Jeyasubramanian, K.; Manivannan, G. Selective Toxicity of ZnO Nanoparticles toward Gram-Positive Bacteria and Cancer Cells by Apoptosis through Lipid Peroxidation. Nanomed.: Nanotechnol., Biol. Med. 2011, 7, 184–192. DOI: 10.1016/j.nano.2010.10.001.
  • Li, M.; Zhu, L.; Lin, D. Toxicity of ZnO Nanoparticles to Escherichia coli: mechanism and the Influence of Medium Components. Environ. Sci. Technol. 2011, 45, 1977–1983. DOI: 10.1021/es102624t.
  • Song, W.; Zhang, J.; Guo, J.; Zhang, J.; Ding, F.; Li, L.; Sun, Z. Role of the Dissolved Zinc Ion and Reactive Oxygen Species in Cytotoxicity of ZnO Nanoparticles. Toxicol Lett. 2010, 199, 389–397. DOI: 10.1016/j.toxlet.2010.10.003.
  • Dwivedi, S.; Wahab, R.; Khan, F.; Mishra, Y. K.; Musarrat, J.; Al-Khedhairy, A. A. Reactive Oxygen Species Mediated Bacterial Biofilm Inhibition via Zinc Oxide Nanoparticles and Their Statistical Determination. PLoS One 2014, 9, e111289. DOI: 10.1371/journal.pone.0111289.
  • Antoine, T. E.; Mishra, Y. K.; Trigilio, J.; Tiwari, V.; Adelung, R.; Shukla, D. Prophylactic, Therapeutic and Neutralizing Effects of Zinc Oxide Tetrapod Structures against Herpes Simplex Virus Type-2 Infection. Antiviral Res. 2012, 96, 363–375. DOI: 10.1016/j.antiviral.2012.09.020.
  • Pan, X.; Redding, J. E.; Wiley, P. A.; Wen, L.; McConnell, J. S.; Zhang, B. Mutagenicity Evaluation of Metal Oxide Nanoparticles by the Bacterial Reverse Mutation Assay. Chemosphere 2010, 79, 113–116. DOI: 10.1016/j.chemosphere.2009.12.056.
  • Liu, Y.; He, L.; Mustapha, A.; Li, H.; Hu, Z.; Lin, M. Antibacterial Activities of Zinc Oxide Nanoparticles against Escherichia coli O157: H7. J. Appl. Microbiol. 2009, 107, 1193–1201. DOI: 10.1111/j.1365-2672.2009.04303.x.
  • Fu, G.; Vary, P. S.; Lin, C.-T. Anatase TiO2 Nanocomposites for Antimicrobial Coatings. J. Phys. Chem. B 2005, 109, 8889–8898. DOI: 10.1021/jp0502196.
  • Berube, D. M. Rhetorical Gamesmanship in the Nano Debates over Sunscreens and Nanoparticles. J. Nanopart. Res. 2008, 10, 23–37. DOI: 10.1007/s11051-008-9362-7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.