223
Views
9
CrossRef citations to date
0
Altmetric
Articles

Catalytic reduction of 4-nitrophenol over biostabilized gold nanoparticles supported onto thioctic acid functionalized silica-coated magnetite nanoparticles and optimization using response surface methodology

&
Pages 489-500 | Received 15 Jul 2019, Accepted 09 Jan 2020, Published online: 04 Feb 2020

References

  • Shen, W. ; Qu, Y. ; Pei, X. ; Li, S. ; You, S. ; Wang, J. ; Zhang, Z. ; Zhou, J. Catalytic Reduction of 4-Nitrophenol Using Gold Nanoparticles Biosynthesized by Cell-Free Extracts of Aspergillus sp. WL-Au. J. Hazard. Mater. 2017, 321 , 299–306. DOI: 10.1016/j.jhazmat.2016.07.051.
  • Seo, Y. S. ; Ahn, E.-Y. ; Park, J. ; Kim, T. Y. ; Hong, J. E. ; Kim, K. ; Park, Y. ; Park, Y. Catalytic Reduction of 4-Nitrophenol with Gold Nanoparticles Synthesized by Caffeic Acid. Nanoscale Res. Lett. 2017, 12 , 7. DOI: 10.1186/s11671-016-1776-z.
  • Zhang, J. ; Chen, G. ; Guay, D. ; Chaker, M. ; Ma, D. Highly Active PtAu Alloy Nanoparticle Catalysts for the Reduction of 4-Nitrophenol. Nanoscale 2014, 6 , 2125–2130. DOI: 10.1039/C3NR04715F.
  • Zhao, P. ; Feng, X. ; Huang, D. ; Yang, G. ; Astruc, D. Basic Concepts and Recent Advances in Nitrophenol Reduction by Gold- and Other Transition Metal Nanoparticles. Coord. Chem. Rev. 2015, 287 , 114–136. DOI: 10.1016/j.ccr.2015.01.002.
  • Noh, J.-H. ; Meijboom, R. Synthesis and Catalytic Evaluation of Dendrimer-Templated and Reverse Microemulsion Pd and Pt Nanoparticles in the Reduction of 4-Nitrophenol: The Effect of Size and Synthetic Methodologies. Appl. Catal. A: General 2015, 497 , 107–120.
  • Li, J. ; Xu, B. ; Liu, G. ; Chen, G. ; Zhang, T. ; Zhang, F. ; Li, C. Aqueous Controllable Synthesis of Spindle-like Palladium Nanoparticles and Their Application for Catalytic Reduction of 4-Nitrophenol. Prog. Nat. Sci. Mater. 2016, 26 , 295–302. DOI: 10.1016/j.pnsc.2016.05.013.
  • Lebaschi, S. ; Hekmati, M. ; Veisi, H. Green Synthesis of Palladium Nanoparticles Mediated by Black Tea Leaves (Camellia sinensis) Extract: Catalytic Activity in the Reduction of 4-Nitrophenol and Suzuki-Miyaura Coupling Reaction under Ligand-Free Conditions. J. Colloid Interface Sci. 2017, 485 , 223–231. DOI: 10.1016/j.jcis.2016.09.027.
  • Gao, C. ; An, Q. ; Xiao, Z. ; Zhai, S. ; Zhai, B. ; Shi, Z. Alginate and Polyethyleneimine Dually Mediated Synthesis of Nanosilver-Containing Composites for Efficient p-Nitrophenol Reduction. Carbohydr. Polym. 2018, 181 , 744–751. DOI: 10.1016/j.carbpol.2017.11.083.
  • Singh, J. ; Mehta, A. ; Rawat, M. ; Basu, S. Green Synthesis of Silver Nanoparticles Using Sun Dried Tulsi Leaves and Its Catalytic Application for 4-Nitrophenol Reduction. J. Environ. Chem. Eng. 2018, 6 , 1468–1474. DOI: 10.1016/j.jece.2018.01.054.
  • Jiang, J. ; Gunasekar, G. H. ; Park, S. ; Kim, S.-H. ; Yoon, S. ; Piao, L. Hierarchical Cu Nanoparticle-Aggregated Cages with High Catalytic Activity for Reduction of 4-Nitrophenol and Carbon Dioxide. Mater. Res. Bull. 2018, 100 , 184–190. DOI: 10.1016/j.materresbull.2017.12.018.
  • Pandey, S. ; Mishra, S. B. Catalytic Reduction of p-Nitrophenol by Using Platinum Nanoparticles Stabilised by Guar Gum. Carbohydr. Polym. 2014, 113 , 525–531. DOI: 10.1016/j.carbpol.2014.07.047.
  • Pocklanova, R. ; Rathi, A. K. ; Gawande, M. B. ; Datta, K. K. R. ; Ranc, V. ; Cepe, K. ; Petr, M. ; Varma, R. S. ; Kvitek, L. ; Zboril, R. Gold Nanoparticle-Decorated Graphene Oxide: Synthesis and Application in Oxidation Reactions under Benign Conditions. J. Mol. Catal. A: Chem. 2016, 424 , 121–127. DOI: 10.1016/j.molcata.2016.07.047.
  • Baruah, D. ; Goswami, M. ; Yadav, R. N. S. ; Yadav, A. ; Das, A. M. Biogenic Synthesis of Gold Nanoparticles and Their Application in Photocatalytic Degradation of Toxic Dyes. J. Photochem. Photobiol. B 2018, 186 , 51–58. DOI: 10.1016/j.jphotobiol.2018.07.002.
  • Nayef, U. M. ; Khudhair, I. M. Synthesis of Gold Nanoparticles Chemically Doped with Porous Silicon for Organic Vapor Sensor by Using Photoluminescence. Optik 2018, 154 , 398–404. DOI: 10.1016/j.ijleo.2017.10.061.
  • Qin, L. ; Zeng, G. ; Lai, C. ; Huang, D. ; Zhang, C. ; Cheng, M. ; Yi, H. ; Liu, X. ; Zhou, C. ; Xiong, W. ; et al. Synthetic Strategies and Application of Gold-Based Nanocatalysts for Nitroaromatics Reduction. Sci. Total Environ. 2019, 652 , 93–116. DOI: 10.1016/j.scitotenv.2018.10.215.
  • Takale, B. S. ; Bao, M. ; Yamamoto, Y. Gold Nanoparticle (AuNPs) and Gold Nanopore (AuNPore) Catalysts in Organic Synthesis. Org. Biomol. Chem. 2014, 12 , 2005–2027. DOI: 10.1039/c3ob42207k.
  • Altaf, R. ; Asmawi, M. Z. B. ; Dewa, A. ; Sadikun, A. ; Umar, M. I. Phytochemistry and Medicinal Properties of Phaleria macrocarpa (Scheff.) Boerl. extracts. Phcog. Rev. 2013, 7 , 73–80. DOI: 10.4103/0973-7847.112853.
  • Sugiwati, S. ; Kardono, L. ; Bintang, M. α-Glucosidase Inhibitory Activity and Hypoglycemic Effect of Phaleria macrocarpa Fruit Pericarp Extracts by Oral Administration to Rats. J. Appl. Sci. 2006, 6 , 2312–2316. DOI: 10.3923/jas.2006.2312.2316.
  • Triastuti, A. ; Hee-Juhn, P. ; Jong, W. Phaleria macrocarpa Suppresses Oxidative Stress in Alloxan-Induced Diabetic Rats by Enhancing Hepatic Antioxidant Enzyme Activity. Nat. Prod. Sci. 2009, 15 , 37–43.
  • Fariza, I. ; Fadzureena, J. ; Zunoliza, A. ; Chuah, A. L. ; Pin, K. ; Adawiah, I. Anti-Inflammatory Activity of the Major Compound from Methanol Extract of Phaleria macrocarpa Leaves. J. Appl. Sci. 2012, 12 , 1195–1198. DOI: 10.3923/jas.2012.1195.1198.
  • Yosie, A. ; Effendy, M. ; Sifzizul, T. ; Habsah, M. Antibacterial, Radical-Scavenging Activities and Cytotoxicity Properties of Phaleria macrocarpa (Scheff.) Boerl. leaves in hepg2 Cell Lines. Int. J. Pharm. Sci. Res. 2011, 2 , 1700–1706.
  • Armenia, E. ; Widya, R. ; Rusdi, D. ; Netty, M. Anti-Atherosclerotic Effect and Liver Toxicity of Ethanolic Extract of Phaleria macrocarpa (Scheff. Boerl) Fruit on Japanese Quail. Asian Symposium on Medicinal Plants, Spices and Other Natural Product XII (ASOMP). Padang, Indonesia, November 13–18, 2006.
  • Lay, M. M. ; Karsani, S. A. ; Mohajer, S. ; Abd Malek, S. N. Phytochemical Constituents, Nutritional Values, Phenolics, Flavonols, Flavonoids, Antioxidant and Cytotoxicity Studies on Phaleria macrocarpa (Scheff.) Boerl fruits. BMC Complement Altern. Med. 2014, 14 , 152. [24885709]
  • Mitsudome, T. ; Noujima, A. ; Mizugaki, T. ; Jitsukawa, K. ; Kaneda, K. Efficient Aerobic Oxidation of Alcohols Using a Hydrotalcite‐Supported Gold Nanoparticle Catalyst. Adv. Synth. Catal. 2009, 351 , 1890–1896. DOI: 10.1002/adsc.200900239.
  • Hosseini, S. H. ; Zohreh, N. ; Alipour, S. ; Busuioc, C. ; Negrea, R. Gold Nanoparticles Stabilized on SBA-15 Functionalized NNN-Pincer Ligand; Highly Effective Catalyst for Reduction of Nitroarenes in Aqueous Medium. Catal. Commun. 2018, 108 , 93–97. DOI: 10.1016/j.catcom.2018.01.002.
  • Amdouni, S. ; Cherifi, Y. ; Coffinier, Y. ; Addad, A. ; Zaïbi, M. A. ; Oueslati, M. ; Boukherroub, R. Gold Nanoparticles Coated Silicon Nanowires for Efficient Catalytic and Photocatalytic Applications. Mater. Sci. Semicond. Proc. 2018, 75 , 206–213. DOI: 10.1016/j.mssp.2017.11.036.
  • Shylesh, S. ; Schünemann, V. ; Thiel, W. R. Magnetically Separable Nanocatalysts: Bridges between Homogeneous and Heterogeneous Catalysis. Angew. Chem. Int. Ed. 2010, 49 , 3428–3459. DOI: 10.1002/anie.200905684.
  • Moghaddam, F. M. ; Ayati, S. E. ; Hosseini, S. H. ; Pourjavadi, A. Gold Immobilized onto Poly(Ionic Liquid) Functionalized Magnetic Nanoparticles: A Robust Magnetically Recoverable Catalyst for the Synthesis of Propargylamine in Water. RSC Adv. 2015, 5 , 34502–34510. DOI: 10.1039/C5RA02974K.
  • Abd Razak, N. F. ; Shamsuddin, M. ; Lee, S. L. Adsorption Kinetics and Thermodynamics Studies of Gold(III) Ions Using Thioctic Acid Functionalized Silica Coated Magnetite Nanoparticles. Chem. Eng. Res. Des. 2018, 130 , 18–28. DOI: 10.1016/j.cherd.2017.12.004.
  • Krishnaswamy, K. ; Vali, H. ; Orsat, V. Value-Adding to Grape Waste: Green Synthesis of Gold Nanoparticles. J. Food Eng. 2014, 142 , 210–220. DOI: 10.1016/j.jfoodeng.2014.06.014.
  • Manan, F. M. A. ; Attan, N. ; Zakaria, Z. ; Keyon, A. S. A. ; Wahab, R. A. Enzymatic Esterification of Eugenol and Benzoic Acid by a Novel Chitosan-Chitin Nanowhiskers Supported Rhizomucor Miehei Lipase: Process Optimization and Kinetic Assessments. Enzyme Microb. Technol. 2018, 108 , 42–52. DOI: 10.1016/j.enzmictec.2017.09.004.
  • Basavaraja, S. ; Balaji, S. D. ; Lagashetty, A. ; Rajasab, A. H. ; Venkataraman, A. Extracellular Biosynthesis of Silver Nanoparticles Using the Fungus Fusarium Semitectum. Mater. Res. Bull. 2008, 43 , 1164–1170. DOI: 10.1016/j.materresbull.2007.06.020.
  • Dwivedi, A. D. ; Gopal, K. Biosynthesis of Silver and Gold Nanoparticles Using Chenopodium Album Leaf Extract. Colloids Surf. A: Physicochem. Eng. Aspects 2010, 369 , 27–33. DOI: 10.1016/j.colsurfa.2010.07.020.
  • Li, B. ; Hao, Y. ; Shao, X. ; Tang, H. ; Wang, T. ; Zhu, J. ; Yan, S. Synthesis of Hierarchically Porous Metal Oxides and Au/TiO2 Nanohybrids for Photodegradation of Organic Dye and Catalytic Reduction of 4-Nitrophenol. J. Catal. 2015, 329 , 368–378. DOI: 10.1016/j.jcat.2015.05.015.
  • Jana, S. ; Ghosh, S. K. ; Nath, S. ; Pande, S. ; Praharaj, S. ; Panigrahi, S. ; Basu, S. ; Endo, T. ; Pal, T. Synthesis of Silver Nanoshell-Coated Cationic Polystyrene Beads: A Solid Phase Catalyst for the Reduction of 4-Nitrophenol. Appl. Catal. A: Gen. 2006, 313 , 41–48. DOI: 10.1016/j.apcata.2006.07.007.
  • Li, D. ; Zeyao, Z. ; Yan, L. Synthesis and Catalytic Property of Urania-Palladium-Graphene Nanohybrids. Sci. China Mater. 2017, 60 , 399–406. DOI: 10.1007/s40843-017-9036-4.
  • Lv, J.-J. ; Wang, A.-J. ; Ma, X. ; Xiang, R.-Y. ; Chen, J.-R. ; Feng, J.-J. One-Pot Synthesis of Porous Pt–Au Nanodendrites Supported on Reduced Graphene Oxide Nanosheets toward Catalytic Reduction of 4-Nitrophenol. J. Mater. Chem. A 2015, 3 , 290–296. DOI: 10.1039/C4TA05034G.
  • Wan, D. ; Li, W. ; Wang, G. ; Lu, L. ; Wei, X. Degradation of p-Nitrophenol Using Magnetic Fe0/Fe3O4/Coke Composite as a Heterogeneous Fenton-like Catalyst. Sci. Total Environ. 2017, 574 , 1326–1334. DOI: 10.1016/j.scitotenv.2016.08.042.
  • Behera, S. K. ; Meena, H. ; Chakraborty, S. ; Meikap, B. C. Application of Response Surface Methodology (RSM) for Optimization of Leaching Parameters for Ash Reduction from Low-Grade Coal. Int. J. Min. Sci. Technol. 2018, 28 , 621–629. DOI: 10.1016/j.ijmst.2018.04.014.
  • Chen, X.-C. ; Bai, J.-X. ; Cao, J.-M. ; Li, Z.-J. ; Xiong, J. ; Zhang, L. ; Hong, Y. ; Ying, H.-J. Medium Optimization for the Production of Cyclic Adenosine 3′,5′-Monophosphate by Microbacterium sp. no. 205 Using Response Surface Methodology. Bioresour. Technol. 2009, 100 , 919–924. DOI: 10.1016/j.biortech.2008.07.062.
  • Khan, N. ; Jadhav, S. ; Rathod, V. K. Enzymatic Synthesis of n-Butyl Palmitate in a Solvent-Free System: RSM Optimization and Kinetic Studies. Biocatal. Biotransform. 2016, 34 , 99–109. DOI: 10.1080/10242422.2016.1212847.
  • Li, G-y. ; Zhong, M. ; Zhou, Z-d. ; Zhong, Y-d. ; Ding, P. ; Huang, Y. Formulation Optimization of Chelerythrine Loaded O-Carboxymethylchitosan Microspheres Using Response Surface Methodology. Int. J. Biol. Macromol. 2011, 49 , 970–978. DOI: 10.1016/j.ijbiomac.2011.08.019.
  • Su, C. ; Zhao, S. ; Wang, P. ; Chang, W. ; Chang, K. ; Zhang, H. Synthesis and Characterization of Ultrafined Palladium Nanoparticles Decorated on 2D Magnetic Graphene Oxide Nanosheets and Their Application for Catalytic Reduction of 4-Nitrophenol. J. Environ. Chem. Eng. 2016, 4 , 3433–3440. DOI: 10.1016/j.jece.2016.07.021.
  • Priya, D. B. ; Asharani, I. V. Catalytic Reduction in 4-Nitrophenol Using Actinodaphne madraspatana Bedd Leaves-Mediated Palladium Nanoparticles. IET Nanobiotechnol. 2018, 12 , 116–126. DOI: 10.1049/iet-nbt.2017.0027.
  • Li, J. ; Liu, C-y. ; Liu, Y. Au/Graphene Hydrogel: Synthesis, Characterization and Its Use for Catalytic Reduction of 4-Nitrophenol. J. Mater. Chem. 2012, 22 , 8426–8430. DOI: 10.1039/c2jm16386a.
  • Kalekar, A. M. ; Sharma, K. K. K. ; Luwang, M. N. ; Sharma, G. K. Catalytic Activity of Bare and Porous Palladium Nanostructures in the Reduction of 4-Nitrophenol. RSC Adv. 2016, 6 , 11911–11920. DOI: 10.1039/C5RA23138H.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.