112
Views
2
CrossRef citations to date
0
Altmetric
Articles

The effect of oxidation state of metal on electrochemical and photochemical driven hydrogen evolution catalyzed by nickel complexes of maleonitriledithiolate ligands

, , &
Pages 521-528 | Received 19 Nov 2019, Accepted 09 Jan 2020, Published online: 30 Jan 2020

References

  • Schiermeier, Q. ; Tollefson, J. ; Scully, T. ; Witze, A. ; Morton, O. Energy Alternatives: Electricity without Carbon. Nature 2008, 454 , 816–823. DOI: 10.1038/454816a.
  • Jacobsen, M. Z. Review of Solutions to Global Warming, Air Pollution, and Energy Security. Energy Environ. Sci. 2009, 2 , 148–173.
  • Barber, J. Photosynthetic Energy Conversion: Natural and Artificial. Chem. Soc. Rev. 2009, 38 , 185–196. DOI: 10.1039/B802262N.
  • Zhang, W. ; Hong, J.-D. ; Zheng, J.-W. ; Huang, Z.-Y. ; Zhou, J.-R. ; Xu, R. Nickel–Thiolate Complex Catalyst Assembled in One Step in Water for Solar H2 Production. J. Am. Chem. Soc. 2011, 133 , 20680–20683. DOI: 10.1021/ja208555h.
  • Gan, L. ; Groy, T. L. ; Tarakeshwar, P. ; Mazinani, S. K. S. ; Shearer, J. ; Mujica, V. ; Jones, A. K. A Nickel Phosphine Complex as a Fast and Efficient Hydrogen Production Catalyst. J. Am. Chem. Soc. 2015, 137 , 1109–1115. DOI: 10.1021/ja509779q.
  • Luo, G.-G. ; Wang, Y.-H. ; Wang, J.-H. ; Wu, J.-H. ; Wu, R.-B. A Square-Planar Nickel Dithiolate Complex as an Efficient Molecular Catalyst for the Electro- and Photoreduction of Protons. Chem. Commun. 2017, 53 , 7007–7010. DOI: 10.1039/C7CC01942D.
  • Pan, Z.-H. ; Tao, Y.-W. ; He, Q.-F. ; Wu, Q.-Y. ; Cheng, L.-P. ; Wei, Z.-H. ; Wu, J.-H. ; Lin, J.-Q. ; Sun, D. ; Zhang, Q.-C. ; et al. The Difference Se Makes: A Bio-Inspired Dppf-Supported Nickel Selenolate Complex Boosts Hydrogen Evolution with High Oxygen Tolerance. Chem. Eur. J. 2018, 24 , 8275–8280. DOI: 10.1002/chem.201801893.
  • Xie, A. ; Zhu, J. ; Luo, G.-G. Efficient Electrocatalytic and Photocatalytic Hydrogen Evolution Using a Linear Trimeric Thiolato Complex of Nickel. Int. J. Hydrogen Energy 2018, 43 , 2772–2780. DOI: 10.1016/j.ijhydene.2017.12.120.
  • Fu, L.-Z. ; Tang, L.-Z. ; Zhang, Y.-X. ; Liang, Q.-N. ; Fang, C. ; Zhan, S.-Z. Hydrogen Evolution Catalyzed by a Water-Soluble Cobalt(II) Complex with Picolinic Acid Ions. Int. J. Hydrogen Energy 2016, 41 , 249–254. DOI: 10.1016/j.ijhydene.2015.10.134.
  • Tang, L.-Z. ; Lin, C.-N. ; Zhang, Y.-X. ; Zhan, S.-Z. Electrocatalytic and Photocatalytic Hydrogen Generation from Water by a Water-Soluble Cobalt Complex Supported by 2-Ethyl-2-(2-Hydroxybenzylideneamino)Propane-1,3-Diol. Int. J. Hydrogen Energy 2016, 41 , 14676–14683. DOI: 10.1016/j.ijhydene.2016.07.011.
  • Hu, X. ; Brunschwig, B. S. ; Peter, J. C. Electrocatalytic Hydrogen Evolution at Low Overpotentials by Cobalt Macrocyclic Glyoxime and Tetraimine Complexes. J. Am. Chem. Soc. 2007, 129 , 8988–8998. DOI: 10.1021/ja067876b.
  • Fillol, J. L. ; Codolà, Z. ; Garcia-Bosch, I. ; Gómez, L. ; Pla, J. J. ; Costas, M. Efficient Water Oxidation Catalysts Based on Readily Available Iron Coordination Complexes. Nat. Chem. 2011, 3 , 807–813. DOI: 10.1038/nchem.1140.
  • Vennampalli, M. ; Liang, G. ; Katta, L. ; Webster, C. E. ; Zhao, X. Electronic Effects on a Mononuclear Co Complex with a Pentadentate Ligand for Catalytic H2 Evolution. Inorg. Chem. 2014, 53 , 10094–10100. DOI: 10.1021/ic500840e.
  • Wu, K.-F. ; Du, Y.-L. ; Tang, H. ; Chen, Z.-Y. ; Lian, T.-Q. Efficient Extraction of Trapped Holes from Colloidal CdS Nanorods. J. Am. Chem. Soc. 2015, 137 , 10224–10230. DOI: 10.1021/jacs.5b04564.
  • Xu, Y. ; Yin, X.-G. ; Huang, Y. ; Du, P.-W. ; Zhang, B. Hydrogen Production on a Hybrid Photocatalytic System Composed of Ultrathin CdS Nanosheets and a Molecular Nickel Complex. Chem. Eur. J. 2015, 21 , 4571–4575. DOI: 10.1002/chem.201406642.
  • Peng, Q.-X. ; Xue, D. ; Zhan, S.-Z. ; Ni, C.-L. Visible-Light-Driven Photocatalytic System Based on a Nickel Complex over CdS Materials for Hydrogen Production from Water. Appl. Catal. B: Environ. 2017, 219 , 353–361. DOI: 10.1016/j.apcatb.2017.07.034.
  • Davison, A. ; Holm, R. H. Metal Complexes Derived from Cis-1,2-Dicyano-1,2-Ethylenedithiolate and Bis(Trifluoromethyl)-1,2-Dithiete. Inorg. Synth. 1967, 8 , 10.
  • Jang, J. S. ; Joshi, U. A. ; Lee, J. S. Solvothermal Synthesis of CdS Nanowires for Photocatalytic Hydrogen and Electricity Production. J. Phys. Chem. C 2007, 111 , 13280–13287. DOI: 10.1021/jp072683b.
  • Cao, J.-P. ; Fang, T. ; Fu, L.-Z. ; Zhou, L.-L. ; Zhan, S.-Z. A Nickel Molecular Electro-Catalyst for Generating Hydrogen from Acetic Acid or Water. Int. J. Hydrogen Energy 2014, 39 , 10980–10986. DOI: 10.1016/j.ijhydene.2014.05.082.
  • Das, A. ; Han, Z.-J. ; Brennessel, W. W. ; Holland, P. L. ; Eisenberg, R. Nickel Complexes for Robust Light-Driven and Electrocatalytic Hydrogen Production from Water. ACS Catal. 2015, 5 , 1397–1406. DOI: 10.1021/acscatal.5b00045.
  • Felton, G. A. N. ; Glass, R. S. ; Lichtenberger, D. L. ; Evans, D. H. Iron-Only Hydrogenase Mimics. Thermodynamic Aspects of the Use of Electrochemistry to Evaluate Catalytic Efficiency for Hydrogen Generation. Inorg. Chem. 2006, 45 , 9181–9184. DOI: 10.1021/ic060984e.
  • Karunadasa, H. I. ; Montalvo, E. ; Sun, Y. ; Majda, M. ; Long, J. R. ; Chang, C. J. A Molecular MoS2 Edge Site Mimic for Catalytic Hydrogen Generation. Science 2012, 335 , 698–702. DOI: 10.1126/science.1215868.
  • Martin, D. J. ; Qiu, K. P. ; Shevlin, S. A. ; Handoko, A. D. ; Chen, X.-W. ; Guo, Z.-X. ; Tang, J.-W. Highly Efficient Photocatalytic H2 Evolution from Water Using Visible Light and Structure-Controlled Graphitic Carbon Nitride. Angew. Chem. Int. Ed. 2014, 53 , 9240–9245. DOI: 10.1002/anie.201403375.
  • Lei, J.-M. ; Luo, S.-P. ; Zhan, S.-Z. ; Wu, S.-P. A Nickel(II) Complex of S,S-Bis(2-Pyridylmethyl)-1,2-Thioethane, a Cocatalyst for Photochemical Driven Hydrogen Evolution from Water under Visible Light. Inorg. Chem. Commun. 2018, 95 , 158–162. DOI: 10.1016/j.inoche.2018.07.030.
  • Cao, S. ; Wang, C.-J. ; Lv, X.-J. ; Chen, Y. ; Fu, W.-F. A Highly Efficient Photocatalytic H2 Evolution System Using Colloidal CdS Nanorods and Nickel Nanoparticles in Water under Visible Light Irradiation. Appl. Catal. B Environ. 2015, 162 , 381–391. DOI: 10.1016/j.apcatb.2014.07.014.
  • Chen, Y.-T. ; Ding, J.-B. ; Guo, Y. ; Kong, L.-B. ; Li, H.-L. A Facile Route to Preparation of CdS Nanorods. Mater. Chem. Phys. 2003, 77 , 734–737. DOI: 10.1016/S0254-0584(02)00136-0.
  • Yang, Z.-H. ; Chu, H.-B. ; Jin, Z. ; Zhou, W.-W. ; Li, Y. Preparation and Properties of CdS/Au Composite Nanorods and Hollow Au Tubes. Chin. Sci. Bull. 2010, 55 , 921–926. DOI: 10.1007/s11434-010-0061-2.
  • Hsu, S. H. ; Hung, S. F. ; Chien, S. H. CdS Sensitized Vertically Aligned Single Crystal TiO2 Nanorods on Transparent Conducting Glass with Improved Solar Cell Efficiency and Stability Using ZnS Passivation Layer. J. Power Sources 2013, 233 , 236–243. DOI: 10.1016/j.jpowsour.2013.01.089.
  • Jung, B. ; Safan, A. ; Batchelor, B. ; Abdel-Wahab, A. Spectroscopic Study of Se(IV) Removal from Water by Reductive Precipitation Using Sulfide. Chemosphere 2016, 163 , 351–358. DOI: 10.1016/j.chemosphere.2016.08.024.
  • Scalmani, G. ; Frisch, M. J. Continuous Surface Charge Polarizable Continuum Models of Solvation. I. General Formalism. J. Chem. Phys. 2010, 132 , 114110. DOI: 10.1063/1.3359469.
  • Payne, B. P. ; Grosvenor, A. P. ; Biesinger, M. C. ; Kobe, B. A. ; McIntyre, N. S. Structure and Growth of Oxides on Polycrystalline Nickel Surfaces. Surf. Interface Anal. 2007, 39 , 582–592. DOI: 10.1002/sia.2565.
  • Han, C.-C. ; Ge, L. ; Chen, C.-F. ; Li, Y.-J. ; Xiao, X.-L. ; Zhang, Y.-N. ; Guo, L.-L. Novel Visible Light Induced Co3O4-g-C3N4 Heterojunction Photocatalysts for Efficient Degradation of Methyl Orange. Appl. Catal. B 2014, 147 , 546–553. DOI: 10.1016/j.apcatb.2013.09.038.
  • Zhang, L.-W. ; Fu, H.-B. ; Zhu, Y.-F. Efficient TiO2 Photocatalysts from Surface Hybridization of TiO2 Particles with Graphite-like Carbon. Adv. Funct. Mater. 2008, 18 , 2180–2189. DOI: 10.1002/adfm.200701478.
  • Yu, Y.-X. ; Ouyang, W.-X. ; Liao, Z.-T. ; Du, B.-B. ; Zhang, W.-D. Construction of ZnO/ZnS/CdS/CuInS2 Core–Shell Nanowire Arrays via Ion Exchange: p–n Junction Photoanode with Enhanced Photoelectrochemical Activity under Visible Light. ACS Appl. Mater. Interfaces 2014, 6 , 8467–8474.
  • Jia, L. ; Wang, D.-H. ; Huang, Y.-X. ; Xu, A.-W. ; Yu, H.-Q. Highly Durable N-Doped Graphene/CdS Nanocomposites with Enhanced Photocatalytic Hydrogen Evolution from Water under Visible Light Irradiation. J. Phys. Chem. C 2011, 115 , 11466–11473. DOI: 10.1021/jp2023617.
  • Han, Z.-H. ; Shen, L.-X. ; Brennessel, W. W. ; Holland, P. L. ; Eisenberg, R. Nickel Pyridinethiolate Complexes as Catalysts for the Light-Driven Production of Hydrogen from Aqueous Solutions in Noble-Metal-Free Systems. J. Am. Chem. Soc. 2013, 135 , 14659–14669. DOI: 10.1021/ja405257s.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.