263
Views
7
CrossRef citations to date
0
Altmetric
Article

One-step synthesis of magnetically recyclable palladium loaded magnesium ferrite nanoparticles: application in synthesis of anticancer drug PCI-32765

, &
Pages 753-763 | Received 08 Sep 2019, Accepted 22 Jan 2020, Published online: 06 Feb 2020

References

  • (a) Chng, L. L.; Erathodiyil, N.; Ying, J. Y. Nanostructured Catalysts for Organic Transformations. Acc. Chem. Res. 2013, 46, 1825. (b) Sharma, N.; Ojha, H.; Bharadwaj, A.; Pathak, D. P.; Sharma, R. K. Preparation and Catalytic Applications of Nanomaterials: A Review. RSC Adv. 2015, 5, 53381. DOI: 10.1039/C5RA06778B.
  • (a) Sharma, R. K.; Dutta, S.; Sharma, S.; Zboril, R.; Varma, R. S.; Gawande, M. B. Fe3O4 (Iron Oxide)-Supported Nanocatalysts: Synthesis, Characterization and Applications in Coupling Reactions. Green Chem. 2016, 18, 3184. (b) Karimi, B.; Mansouri, F.; Mirzaei, H. M. Recent Applications of Magnetically Recoverable Nanocatalysts in C-C and C-X Coupling Reactions. ChemCatChem. 2015, 7, 1736. DOI: 10.1002/cctc.201403057.
  • (a) Fodor, A.; Hell, Z.; Pirault-Roy, L.; The Influence of the Nature of the Support on the Copper–Palladium Catalysed Suzuki–Miyaura-Coupling. Catal. Lett. 2016, 146, 596. (b) Yang, J.; Tian, C.; Wang, L.; Fu, H. An Effective Strategy for Small-Sized and Highly-Dispersed Palladium Nanoparticles Supported on Graphene with Excellent Performance for Formic Acid Oxidation. J. Mater. Chem. 2011, 21, 3384. DOI: 10.1039/c0jm03361h.
  • Kharisov, B. I.; Rasika Dias, H. V.; Kharissova, O. V. Mini-Review: Ferrite Nanoparticles in the Catalysis. Arab. J. Chem. 2019, 12, 1234–1246. DOI: 10.1016/j.arabjc.2014.10.049.
  • (a) He, J.; Yang, S.; Riisager, A. Magnetic Nickel Ferrite Nanoparticles as Highly Durable Catalysts for Catalytic Transfer Hydrogenation of Bio-Based Aldehydes. Catal. Sci. Technol. 2018, 8, 790–797. (b) Mapossa, A. B.; Dantas, J.; Silva, M. R.; Kiminami, R. H. G. A.; Costa, A. C. F. M.; Daramola, M. O. Catalytic Performance of NiFe2O4 and Ni0.3Zn0.7Fe2O4 Magnetic Nanoparticles During Biodiesel Production. Arab. J. Chem. 2019, in press. (c) Kalam, A.; Al-Sehemi, A. G.; Assiri, M.; Du, G.; Ahmad, T.; Ahmad, I.; Pannipara, M. Modified Solvothermal Synthesis of Cobalt Ferrite (CoFe2O4) Magnetic Nanoparticles Photocatalysts for Degradation of Methylene Blue with H2O2/Visible Light. Results Phys. 2018, 8, 1046–1053. (d) Han, F.; Xu, X.; Fu, Y.; Wang, X. Synthesis of Rice-Husk-Carbon-Supported Nickel Ferrite Catalyst for Reduction of Nitrophenols. J. Nanosci. Nanotechnol. 2019, 19, 5838–5846. (e) Ibrahim, I.; Athanasekou, C.; Manolis, G.; Kaltzoglou, A.; Nasikas, N. K.; Katsaros, F.; Devlin, E.; Kontos, A. G.; Falaras, P. Photocatalysis as an Advanced Reduction Process (ARP): The Reduction of 4-Nitrophenol Using Titania Nanotubes-Ferrite Nanocomposites. J. Hazard. Mater. 2019, 372, 37–44. (f) Moslehi, A.; Zarei, M. Application of Magnetic Fe3O4 Nanoparticles as a Reusable Heterogeneous Catalyst in the Synthesis of β-Lactams Containing Amino Groups. New J. Chem. 2019, 43, 12690–12697. DOI: 10.1039/C9NJ02759A.
  • Saire-Saire, S.; Barbosa, E. C. M.; Garcia, D.; Andrade, L. H.; Garcia-Segura, S.; Camargo, P. H. C.; Alarcon, H. Green Synthesis of Au Decorated CoFe2O4 Nanoparticles for Catalytic Reduction of 4-Nitrophenol and Dimethylphenylsilane Oxidation. RSC Adv. 2019, 9, 22116–22123. DOI: 10.1039/C9RA04222A.
  • Dutta, M. M.; Talukdar, H.; Phukan, P. CuI Incorporated Cobalt Ferrite Nanoparticles as a Magnetically Separable Catalyst for Oxidative Amidation Reaction. Dalton Trans. 2019, 48, 16041–16052. DOI: 10.1039/C9DT03440D.
  • (a) Hajalilou, A.; Mazlan, S. A. A review on preparation techniques for synthesis of nanocrystalline soft magnetic ferrites and investigation on the effects of microstructure features on magnetic properties. Appl. Phys. A 2016, 122, 680. (b) Ortiz-Quiñonez, J.-L.; Pal, U.; Villanueva, M. S. Structural, Magnetic, and Catalytic Evaluation of Spinel Co, Ni, and Co–Ni Ferrite Nanoparticles Fabricated by Low-Temperature Solution Combustion Process. ACS Omega. 2018, 3, 14986–15001 DOI: 10.1021/acsomega.8b02229.
  • Fino, D.; Russo, N.; Saracco, G.; Specchia, V. CNG Engines Exhaust Gas Treatment via Pd-Spinel-Type-Oxide Catalysts. Catal. Today 2006, 17, 559. DOI: 10.1016/j.cattod.2006.06.003.
  • Rashad, M. M. Magnetic Properties of Nanocrystalline Magnesium Ferrite by Co-Precipitation Assisted with Ultrasound Irradiation. J. Mater. Sci. 2007, 42, 5248–5255. DOI: 10.1007/s10853-006-0389-9.
  • Senapati, K. K.; Roy, S.; Borgohain, C.; Phukan, P. Palladium Nanoparticle Supported on Cobalt Ferrite: An Efficient Magnetically Separable Catalyst for Ligand Free Suzuki Coupling. J. Mol. Catal. A Chem. 2012, 352, 128–134. DOI: 10.1016/j.molcata.2011.10.022.
  • Govha, J.; Bala Narasaiah, T.; Kumar, P.; Shilpa Chakra, C. Synthesis of Nano-Magnesium Ferrite Spinel and Its Characterization. Int. J. Eng. Res. Technol. (IJERT). 2014, 3, 1420.
  • Maensiri, S.; Sangmanee, M.; Wiengmoon, A. Magnesium Ferrite (MgFe2O4) Nanostructures Fabricated by Electrospinning. Nanoscale Res. Lett. 2009, 4, 221–228.
  • (a) Bououdina, M.; Al-Najar, B.; Falamarzi, L.; Judith Vijaya, J.; Shaikh, M. N.; Bellucci, S.; Effect of Annealing on Phase Formation, Microstructure and Magnetic Properties of MgFe2O4 Nanoparticles for Hyperthermia. Eur. Phys. J. Plus. 2019, 134, 84. (b) Erdawati, E.; Darsef, D, Synthesis of Magnesium Ferrites for the Adsorption of Congo Red from Aqueous Solution Using Batch Studies. IOP Conf. Ser. Mater. Sci. Eng. 2018, 335, 012024. (c) Arun Kumar, N. S.; Ashoka, S.; Pandurangappa, M. MgFe2O4 Nanoparticles Synthesis and Characterization: Application to Trace Level Mercury(II) Measurement from Waste Water Samples. Mater. Res. Express. 2019, 6, 125049. (d) Abdellah, W.; Ezzat, A; Samir, I. Removal of Pertechnetate (99TcO4-) from Liquid Waste by Magnesium Ferrite (MgFe2O4) Nanoparticles Synthesized Using Sol-Gel Auto Combustion Method. Open J. Appl. Sci. 2019, 9, 68–86. (e) Ali, N. A.; Idris, N. H.; Din, M. F. M.; Mustafa, N. S.; Sazelee, N. A.; Halim Yap, F. A.; Sulaiman, N. N.; Yahya, M. S.; Ismail, M. Nanolayer-Like-Shaped MgFe2O4 Synthesised via a Simple Hydrothermal Method and Its Catalytic Effect on the Hydrogen Storage Properties of MgH2. RSC Adv. 2018, 8, 15667–15674. (f) Safaei Ghomi, J.; Akbarzadeh, Z. Ultrasonic Accelerated Knoevenagel Condensation by Magnetically Recoverable MgFe2O4 Nanocatalyst: A Rapid and Green Synthesis of Coumarins Under Solvent-Free Conditions. Ultrason. Sonochem. 2018, 40, 78–83. (g) Patil, J. Y.; Nadargi, D. Y.; Mulla, I. S.; Suryavanshi, S. S. Cerium Doped MgFe2O4 Nanocomposites: Highly Sensitive and Fast Response-Recoverable Acetone Gas Sensor. Heliyon. 2019, 5, e01489. (h) Baby, J. N.; Sriram, B.; Wang, S.-F.; George, M. Effect of Various Deep Eutectic Solvents on the Sustainable Synthesis of MgFe2O4 Nanoparticles for Simultaneous Electrochemical Determination of Nitrofurantoin and 4-Nitrophenol. ACS Sustain. Chem. Eng. 2020, 8, 1479–1486. DOI: 10.1021/acssuschemeng.9b05755.
  • (a) Jia, C.-J.; Liu, Y.; Schwickardi, M.; Weidenthaler, C.; Spliethoff, B.; Schmidt, W.; Schüth, F. Small Gold Particles Supported on MgFe2O4 Nanocrystals as Novel Catalyst for CO Oxidation. Appl. Catal. A. 2010, 386, 94. (b) Zheng, B.; Wu, S.; Yang, X.; Jia, M.; Zhang, W.; Liu, G. Room Temperature CO Oxidation over Pt/MgFe2O4: A Stable Inverse Spinel Oxide Support for Preparing Highly Efficient Pt Catalyst. ACS Appl. Mater. Interfaces 2016, 8, 26683. (c) Moura de, E. M.; Garcia, M. A. S.; Gonçalves, R. V.; Kiyohara, P. K.; Jardim, R. F.; Rossi, L. M. Gold Nanoparticles Supported on Magnesium Ferrite and Magnesium Oxide for the Selective Oxidation of Benzyl Alcohol. RSC Adv. 2015, 5, 15035. (d) Hassanzadeh, S.; Eisavi, R.; Abbasian, M. Preparation and Characterization of Magnetically Separable MgFe2O4/Mg(OH)2 Nanocomposite as an Efficient Heterogeneous Catalyst for Regioselective One‐Pot Synthesis of β‐Chloroacetates from Epoxides. Appl. Organometal. Chem. 2018, 32:e4520. (e) Rahmanivahid, B.; Pinilla-de Dios, M.; Haghighi, M.; Luque, R. Mechanochemical Synthesis of CuO/MgAl2O4 and MgFe2O4 Spinels for Vanillin Production from Isoeugenol and Vanillyl Alcohol. Molecules. 2019, 24, 2597. (f) Ramos-Ramírez, E.; Tzompantzi-Morales, F.; Gutiérrez-Ortega, N.; Mojica-Calvillo, H.G.; Castillo-Rodríguez, J. Photocatalytic Degradation of 2,4,6-Trichlorophenol by MgO–MgFe2O4 Derived from Layered Double Hydroxide Structures. Catalysts. 2019, 9, 454. (g) Godlyn Abraham A.; Manikandan A.; Manikandan E.; Vadivel S.; Jaganathan S. K.; Baykal A.; Sri Renganathan P. Enhanced Magneto-Optical and Photo-Catalytic Properties of Transition Metal Cobalt (Co2+ Ions) Doped Spinel MgFe2O4 Ferrite Nanocomposites. J. Magnet. Magnet. Mater. 2018, 452, 380–388. (h) Kamzin, A. S.; Das, H.; Wakiya, N. Magnetic Core/Shell Nanocomposites MgFe2O4/SiO2 for Biomedical Application: Synthesis and Properties. Phys. Solid State. 2018, 60, 1752–1761. DOI: 10.1134/S1063783418090147.
  • (a) Torborg, C.; Beller, M.; Recent Applications of Palladium‐Catalyzed Coupling Reactions in the Pharmaceutical, Agrochemical, and Fine Chemical Industries. Adv. Synth. Catal. 2009, 351, 3027–3043. (b) Devendar, P.; Qu, R.-Y.; Kang, W.-M.; He, B.; Yang, G.-F. Palladium-Catalyzed Cross-Coupling Reactions: A Powerful Tool for the Synthesis of Agrochemicals. J. Agric. Food Chem. 2018, 66, 8914–8934. DOI: 10.1021/acs.jafc.8b03792.
  • Zhang, F.; Niu, J.; Wang, H.; Yang, H.; Jin, J.; Liu, N.; Zhang, Y.; Li, R.; Ma, J. Palladium Was Supported on Super Paramagnetic Nanoparticles: A Magnetically Recoverable Catalyst for Heck Reaction. Mater. Res. Bull. 2012, 47, 2, 504–507. DOI: 10.1016/j.materresbull.2011.10.030.
  • Rathi, A. K.; Gawande, M. B.; Pechousek, J.; Tucek, J.; Aparicio, C.; Petr, M.; Tomanec, O.; Krikavova, R.; Travnicek, Z.; Varma, R. S.; Zboril, R. Maghemite Decorated with Ultra-Small Palladium Nanoparticles (γ-Fe2O3–Pd): Applications in the Heck–Mizorokiolefination, Suzuki Reaction and Allylic Oxidation of Alkenes. Green Chem. 2016, 18, 2363. DOI: 10.1039/C5GC02264A.
  • Jadhav, V. G.; Bhojane, J. M.; Nagarkar, J. M. Palladium on Manganese Ferrite: An Efficient Catalyst for One Pot Synthesis of Primary Amides from Iodobenzene. RSC Adv. 2015, 5, 6636–6641. DOI: 10.1039/C4RA12827C.
  • (a) Dehghani Firuzabadi F.; Asadi Z.; Panahi F.; Immobilized NNN Pd-Complex on Magnetic Nanoparticles: Efficient and Reusable Catalyst for Heck and Sonogashira Coupling Reactions RSC Adv. 2016, 6, 101061. (b) Wang, J.; Xu, B.; Sun, H.; Song, G. Palladium Nanoparticles Supported on Functional Ionic Liquid Modified Magnetic Nanoparticles as Recyclable Catalyst for Room Temperature Suzuki Reaction. Tet. Lett. 2013, 54, 238. (c) Singh, A. S.; Shelkar, R. S,; Nagarkar, J. M. Palladium(II) on Functionalized NiFe2O4: An Efficient and Recyclable Phosphine-Free Heterogeneous Catalyst for Suzuki Coupling Reaction. Catal. Lett. 2015, 145, 723. (d) Ghorbani-Vaghei, R.; Hemmati, S.; Hekmati, M. Pd Immobilized on Modified Magnetic Fe3O4 Nano-Particles: Magnetically Recoverable and Reusable Pd Nanocatalyst for Suzuki-Miyaura Coupling Reactions and Ullmann-Type N-Arylation of Indoles J. Chem. Sci. 2016, 128, 1157. (e) Mahmoudzadeh, M.; Mehdipour, E.; Eisavi, R. MgFe2O4@SiO2-PrNH2/Pd/bimenthonoxime Core-Shell Magnetic Nanoparticles as a Recyclable Green Catalyst for Hete-rogeneous Suzuki Cross-Coupling in Aqueous Ethanol. J. Coord. Chem. 2019, 72, 841.
  • Wenshu, T.; Su, Y.; Li, Q.; Shian Gand Jian, K. S. Well-Dispersed, Ultrasmall, Superparamagnetic Magnesium Ferrite Nanocrystallites with Controlled Hydrophilicity/Hydrophobicity and High Saturation Magnetization. RSC Adv. 2013, 3, 13961. DOI: 10.1039/c3ra41543k.
  • CH Q3D (R1) Guideline for Elemental Impurities, ICH International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH). Official web sitehttps://database.ich.org/sites/default/files/Q3D-R1EWG_Document_Step4_Guideline_2019_0322.pdf (accessed Jan 10, 2020).
  • Todd, B.; Darren, D.; Joshua, C. H.; Shuang, L.; Renee, M. Z. Heteroaromatic Compounds as btk Inhibitors. 2014, PCT Int. Appl. WO/2014/152114A1.
  • Fariba, S.; Ali, R.; Hamideh, A.; Saeid, T. F.; Pegah, A. A.; Mehdi, K.; Sang, W. J.; Nahid, D. Aqueous-Phase Oxidation of Alcohols with Green Oxidants (Oxone and Hydrogen Peroxide) in the Presence of MgFe2O4 Magnetic Nanoparticles as an Efficient and Reusable Catalyst. J. Nanostruct. 2016, 6, 264.
  • Rampalli, S.; Upalla, L. K.; Patneedi, C. B.; Dasari, G. K.; Chaturvedi, A. K. Process for the Preparation of Ibrutinib. 2017, PCT Int. Appl., WO/2017/134588.
  • Muddasani, P.; Budideti, S. R.; Madalapu, V.; Gattu, A.; Konda, B. A.; Nannapaneni, V. C. A Process for the Preparation of Ibrutinib. 2017, PCT Int. Appl. WO/2017/134684.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.