124
Views
8
CrossRef citations to date
0
Altmetric
Article

Effect of P. kessleri extracts treatment on AgNPs synthesis

, , &
Pages 842-852 | Received 28 Oct 2019, Accepted 16 Jan 2020, Published online: 13 Feb 2020

References

  • Liu, Y.; Huang, L.-Q.; Wang, J.; Tong, H.-M.; Yuan, L.; Zhao, L.-H.; Zhang, W.-W.; Wang, L.; Zhu, J. Fabrication of Silver Ordered Nanoarrays SERS-Active Substrates and Their Applications in Bladder Cancer Cells Detection. Spectrosc. Spectr. Anal. 2012, 32, 386–390.
  • Manivasagan, P.; Venkatesan, J.; Sivakumar, K.; Kim, S.-K. Actinobacteria Mediated Synthesis of Nanoparticles and Their Biological Properties: A Review. Crit. Rev. Microbiol. 2016, 42, 209–221. DOI: 10.3109/1040841X.2014.917069.
  • Jeevanandam, J.; Barhoum, A.; Chan, Y. S.; Dufresne, A.; Danquah, M. K. Review on Nanoparticles and Nanostructured Materials: history, Sources, Toxicity and Regulations. Beilstein J. Nanotechnol. 2018, 9, 1050–1074. DOI: 10.3762/bjnano.9.98.
  • Naza, S. S.; Shah, M. R.; Islam, N. U.; Alam, S. S. Enhanced Urease Inhibition Activity of Ag Nanomaterials Capped with N-Substituted Methyl 5-Acetamido-β-Resorcylate. Prog. Nat. Sci. Mat. Int. 2019, 29, 129–137. DOI: 10.1016/j.pnsc.2019.02.003.
  • Wiley, B.; Sun, Y.; Xia, Y. Synthesis of Silver Nanostructures with Controlled Shapes and Properties. Acc. Chem. Res. 2007, 40, 1067–1076. DOI: 10.1021/ar7000974.
  • Cobley, C. M.; Skrabalak, S. E.; Campbell, D. J.; Xia, Y. Shape-Controlled Synthesis of Silver Nanoparticles for Plasmonic and Sensing Applications. Plasmonics. 2009, 4, 171–179. DOI: 10.1007/s11468-009-9088-0.
  • Christopher, P.; Linic, S. Shape- and Size-Specific Chemistry of Ag Nanostructures in Catalytic Ethylene Epoxidation. Chem. Cat. Chem. 2010, 2, 78–83. DOI: 10.1002/cctc.200900231.
  • Liu, T.; Li, D.; Yang, D.; Jiang, M. Fabrication of Flower-like Silver Structures through an Isotropic Growth. Langmuir. 2011, 27, 6211–6217. DOI: 10.1021/la200512m.
  • Xu, M.; Zhang, Y. Seed-Mediated Approach for the Size-Controlled Synthesis of Flower-like Ag Mesostructures. Mater. Lett. 2014, 130, 9–13. DOI: 10.1016/j.matlet.2014.05.055.
  • Makarov, V. V.; Love, A. J.; Sinitsyna, O. V.; Makarova, S. S.; Yaminsky, I. V.; Taliansky, M. E.; Kalinina, N. O. “Green” Nanotechnologies: synthesis of Metal Nanoparticles Using Plants. Acta Naturae. 2014, 6, 35–44.
  • Ahmed, S.; Ahmad, M.; Swami, B. L.; Ikram, S. A Review on Plants Extract Mediated Synthesis of Silver Nanoparticles for Antimicrobial Applications: A Green Expertise. J. Adv. Res. 2016, 7, 17–28. DOI: 10.1016/j.jare.2015.02.007.
  • Tolaymat, T. M.; El Badawy, A. M.; Genaidy, A.; Scheckel, K. G.; Luxton, T. P.; Suidan, M. An Evidence-Based Environmental Perspective of Manufactured Silver Nanoparticle in Syntheses and Applications: A Systematic Review and Critical Appraisal of Peer-Reviewed Scientific Papers. Sci. Total Environ. 2010, 408, 999–1006. DOI: 10.1016/j.scitotenv.2009.11.003.
  • Molina, G. A.; Esparza, R.; López-Miranda, J. L.; Hernández-Martínez, A. R.; España-Sánchez, B. L.; Elizalde-Peña, E. A.; Estevez, M. Green Synthesis of Ag Nanoflowers Using Kalanchoe Daigremontiana Extract for Enhanced Photocatalytic and Antibacterial Activities. Colloids Surf. B. 2019, 180, 141–149. DOI: 10.1016/j.colsurfb.2019.04.044.
  • Annamalai, J.; Nallamuthu, T. Characterization of Biosynthesized Gold Nanoparticles from Aqueous Extract of Chlorella Vulgaris and Their anti-Pathogenic Properties. Appl. Nanosci. 2015, 5, 603–607. DOI: 10.1007/s13204-014-0353-y.
  • Singaravelu, G.; Arockiamary, J.; Kumar, V. G.; Govindaraju, K. A Novel Extracellular Synthesis of Monodisperse Gold Nanoparticles Using Marine Alga Sargassum Wightii Greville. Colloids Surf. B. Biointerfaces. 2007, 57, 97–101. DOI: 10.1016/j.colsurfb.2007.01.010.
  • Singh, M.; Kalaivani, R.; Manikandan, S.; Sangeetha, N.; Kumaraguru, A. Facile Green Synthesis of Variable Metallic Gold Nanoparticle Using Padina Gymnospora, a Brown Marine Macroalga. Appl. Nanosci. 2013, 3, 145–151. DOI: 10.1007/s13204-012-0115-7.
  • Kannan, R. R. R.; Arumugam, R.; Ramya, D.; Manivannan, K.; Anantharaman, P. Green Synthesis of Silver Nanoparticles Using Marine Macroalga Chaetomorpha Linum. Appl. Nanosci. 2013, 3, 229–233. DOI: 10.1007/s13204-012-0125-5.
  • Shanmugam, N.; Rajkamal, P.; Cholan, S.; Kannadasan, N.; Sathishkumar, K.; Viruthagiri, G.; Sundaramanickam, A. Biosynthesis of Silver Nanoparticles from the Marine Seaweed Sargassum Wightii and Their Antibacterial Activity against Some Human Pathogens. Appl. Nanosci. 2014, 4, 881–888. DOI: 10.1007/s13204-013-0271-4.
  • El-Seedi, H. R.; El-Shabasy, R. M.; Khalifa, S. A. M.; Saeed, A.; Shah, A.; Shah, R.; Iftikhar, F. J.; Abdel-Daim, M. M.; Omri, A.; Hajrahand, N. H.; et al. Metal Nanoparticles Fabricated by Green Chemistry Using Natural Extracts: Biosynthesis, Mechanisms, and Applications. RSC Adv. 2019, 9, 24539–24559., DOI: 10.1039/C9RA02225B.
  • Sharma, A. K.; Parul, T. General, Variation of Both Chemical Composition and Antioxidant Properties of Newly Isolated Parachlorella Kessleri GB1, by Growing in Different Culture Conditions. LWT. Food Sci. Technol. 2019, 112, 108205. DOI: 10.1016/j.lwt.2019.05.103.
  • Barman, K.; Chowdhury, D.; Baruah, P. K. Bio-Synthesized Silver Nanoparticles Using Zingiber Officinale Rhizome Extract as Efficient Catalyst for the Degradation of Environmental Pollutants. Inorg. Nano-Metal Chem. 2020, 50, 57–65. DOI: 10.1080/24701556.2019.1661468.
  • Vidyadharani, G.; Dhandapani, R. Fourier Transform Infrared (FTIR) Spectroscopy for the Analysis of Lipid from Chlorella Vulgaris. Appl. Biol. 2013, 61, 16753–16756.
  • Syafiuddin, A.; Salmiati, Hadibarata, T.; Salim, M. R.; Hong Kueh, A. B.; Sari, A. A. A Purely Green Synthesis of Silver Nanoparticles Using Carica Papaya, Manihot Esculenta, and Morinda Citrifolia: synthesis and Antibacterial Evaluations. Bioprocess Biosyst. Eng. 2017, 40, 1349–1361. DOI: 10.1007/s00449-017-1793-z.
  • Zhao, Z. Y.; Wang, M. H.; Liu, T. T. Tribulus Terrestris Leaf Extract Assisted Green Synthesis and Gas Sensing Properties of Ag-Coated ZnO Nanoparticles. Mater. Lett. 2015, 158, 274–277. DOI: 10.1016/j.matlet.2015.05.155.
  • Roopan, S. M.; Rohit,Madhumitha, G.; Rahuman, A. A.; Kamaraj, C.; Bharathi, A.; Surendra, T. V. Low-Cost and Eco-Friendly Phyto-Synthesis of Silver Nanoparticles Using Cocos Nucifera Coir Extract and Its Larvicidal Activity. Ind. Crops Prod. 2013, 43, 631–635. DOI: 10.1016/j.indcrop.2012.08.013.
  • Fayaz, A. M.; Girila, M.; Rahman, M.; Venkatesan, R.; Kalaichelvan, P. T. Biosynthesis of Silver and Gold Nanoparticles Using Thermophilic Bacterium Geobacillus stearothermophilus. Process Biochem. 2011, 46, 1958–1962. DOI: 10.1016/j.procbio.2011.07.003.
  • Kalita, N. K.; Ganguli, J. N. Hibiscus Sabdariffa L. leaf Extract Mediated Green Synthesis of Silver Nanoparticles and Its Use in Catalytic Reduction of 4-Nitrophenol. Inorg. Nano-Metal Chem. 2017, 47, 788–793. DOI: 10.1080/15533174.2016.1218506.
  • Joseph, S.; Mathew, B. Microwave-Assisted Facile Green Synthesis of Silver Nanoparticles and Spectroscopic Investigation of the Catalytic Activity. Bull. Mater. Sci. 2015, 38, 659–666. DOI: 10.1007/s12034-015-0892-1.
  • Shukla, S. P.; Roy, M.; Mukherjee, P.; Tyagi, A. K.; Mukherjee, T.; Adhikari, S. Interaction of Bilirubin with Ag and Au Ions: green Synthesis of Bilirubin-Stabilized Nanoparticles. J. Nanopart. Res. 2012, 14, 981–992. DOI: 10.1007/s11051-012-0981-7.
  • Syafiuddin, A.; Salmiati, T.; Hadibarata, M. R.; Salim, A. B.; Hong Kueh, A. A. S. Novel Weed-Extracted Silver Nanoparticles and Their Antibacterial Appraisal against a Rare Bacterium from River and Sewage Treatment Plan. Nanomaterial. 2018, 8, 9. DOI: 10.3390/nano8010009.
  • Xie, J.; Lee, J. Y.; Wang, D. I. C.; Ting, Y. P. Silver Nanoplates: From Biological to Biomimetic Synthesis. ACS. Nano. 2007, 1, 429–439. DOI: 10.1021/nn7000883.
  • Jena, J.; Pradhan, N.; Dash, B. P.; Sukla, L. B.; Panda, P. K. Biosynthesis and Characterization of Silver Nanoparticles Using Microalga Chlorococcum Humicola and Its Antibacterial Activity. Int. J. Nanomat. Biostruct. 2013, 3, 1–8.
  • Govindaraju, K.; Basha, S. K.; Kumar, V. G.; Singaravelu, G. Silver, Gold and Bimetallic Nanoparticles Pro Duction Using Single-Cell Protein (Spirulina Platensis) Geitler. J. Mater. Sci. 2008, 43, 5115–5122. DOI: 10.1007/s10853-008-2745-4.
  • Castro, L.; Blázquez, M. L.; Muñoz, J. A.; González, F.; Ballester, A. Biological Synthesis of Metallic Nanoparticles Using Algae. IET Nanobiotechnol. 2013, 7, 109–116. DOI: 10.1049/iet-nbt.2012.0041.
  • Sharma, B.; Purkayastha, D. D.; Hazra, S.; Gogoi, L.; Bhattacharjee, C. R.; Ghosh, N. N.; Rout, J. Biosynthesis of Gold Nanoparticles Using Freshwater Green Alga, Prasiola Crispa. Mat. Lett. 2014, 116, 94–97. DOI: 10.1016/j.matlet.2013.10.107.
  • Bauer, L. M.; Costa, J. A. V.; da Rosa, A. P. C.; Santos, L. O. Growth Stimulateon and Synthesis of Lipids, Pigments and Antioxidants with Magnetic Fields in Chlorella Kessleri Cultivations. Bioresour. Technol. 2017, 244, 1425–1432. DOI: 10.1016/j.biortech.2017.06.036.
  • Ota, S.; Oshima, K.; Yamazaki, T.; Kim, S.; Yu, Z.; Yoshihara, M.; Takeda, K.; Takeshita, T.; Hirata, A.; Bišová, K.; et al. Highly Efficient Lipid Production in the Green Alga Parachlorella Kessleri: Draft Genome and Transcriptome Endorsed by Whole-Cell 3D Ultrastructure. Biotechnol. Biofuel. 2016, 9, 13–23. DOI: 10.1186/s13068-016-0424-2.
  • Piasecka, A.; Krzemińska, I.; Tys, J. Enrichment of Parachlorella Kessleri Biomass with Bioproducts: Oil and Protein by Utilization of Beet Molasses. J. Appl. Phycol. 2017, 29, 1735–1743. DOI: 10.1007/s10811-017-1081-y.
  • Sheny, D. S.; Mathew, J.; Philip, D. Phytosynthesis of Au, Ag and Au-Ag Bimetallic Nanoparticles Using Aqueous Extract and Dried Leaf of Anacardium Occidentale. Spectrochim. Acta Part A: Molec. Biomolec. Spectrosc. 2011, 79, 254–262. DOI: 10.1016/j.saa.2011.02.051.
  • Kumari, M. M.; Jacob, J.; Philip, D. Green Synthesis and Applications of Au-Ag Bimetallic Nanoparticles. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 2015, 137, 185–192. DOI: 10.1016/j.saa.2014.08.079.
  • Zheng, S.; Zhou, Q.; Chen, C.; Yang, F.; Cai, Z.; Li, D.; Geng, Q.; Feng, Y.; Wang, H. Role of Extracellular Polymeric Substances on the Behavior and Toxicity of Silver Nanoparticles and Ions to Green Algae Chlorella Vulgaris. Sci. Total Environ. 2019, 660, 1182–1190. DOI: 10.1016/j.scitotenv.2019.01.067.
  • Ponnuswamy, I.; Madhavan, S.; Shabudeen, S. Isolation and Characterization Green Microalgae for Carbon Sequestration Waste Water Treatment and Bio-Fuel Production. Int. J. Biosci. Biotech. 2013, 5, 17–26.
  • Kavita, K.; Singh, V. K.; Jha, B. 24-Branched Δ5 Sterols from Laurencia Papillosa Red Seaweed with Antibacterial Activity against Human Pathogenic Bacteria. Microbiol. Res. 2014, 169, 301–306. DOI: 10.1016/j.micres.2013.07.002.
  • Velgosová, O.; Mražíková, A.; Veselovský, L.; Willner, J.; Fornalczyk, A. Influence of Different Plants Extracts on Silver Nanoparticles Green Synthesis. Arch. Metallur. Mater. 2019, 64, 665–670.
  • Velgosová, O.; Mražíková, A.; Čižmárová, E.; Málek, J. Green Synthesis of Ag Nanoparticles: Effect of Algae Life Cycle on Ag Nanoparticle Production and Long-Term Stability. Trans. Nonferr. Metals Soc. China. 2018, 28, 974–979. DOI: 10.1016/S1003-6326(18)64732-6.
  • Hernández-Morales, L.; Espinoza-Gómez, H.; Flores-López, L. Z.; Sotelo-Barrera, E. L.; Núñez-Rivera, A.; Cadena-Nava, R. D.; Alonso-Núñez, G.; Espinoza, K. A. Study of the Green Synthesis of Silver Nanoparticles Using a Natural Extract of Dark or White Salvia Hispanica L. seeds and Their Antibacterial Application. Appl. Surf. Sci. 2019, 489, 952–961. DOI: 10.1016/j.apsusc.2019.06.031.
  • Fernando, I.; Zhou, Y. Impact of pH on the Stability, Dissolution and Aggregation Kinetics of Silver Nanoparticles. Chemosphere. 2019, 216, 297–305. DOI: 10.1016/j.chemosphere.2018.10.122.
  • Ebrahimzadeh, M. A.; Naghizadeh, A.; Amiri, O.; Shirzadi-Ahodashti, M.; Mortazavi-Derazkola, S. Green and Facile Synthesis of Ag Nanoparticles Using Crataegus Pentagyna Fruit Extract (CP-AgNPs) for Organic Pollution Dyes Degradation and Antibacterial Application. Bioorg. Chem. 2020, 94, 103425. DOI: 10.1016/j.bioorg.2019.103425.
  • Fernando, I.; Qian, T.; Zhou, Y. Long Term Impact of Surfactants & Polymers on the Colloidal Stability, Aggregation and Dissolution of Silver Nanoparticles. Environ. Res. 2019, 179, 108781. DOI: 10.1016/j.envres.2019.108781.
  • Velgosová, O.; Mražíková, A.; Marcinčáková, R. Influence of pH on Green Synthesis of Ag Nanoparticles. Mat. Lett. 2016, 180, 336–339. DOI: 10.1016/j.matlet.2016.04.045.
  • Dean, A. P.; Martin, M. C.; Sigee, D. C. Resolution of co Dominant Phytoplankton Species in Atrophic Lake Using Synchrotron–Based Fourier Transform Infrared Spectroscopy. Phycologia. 2007, 46, 151–159. DOI: 10.2216/06-27.1.
  • Duygu, D.; Udoh, A. U.; Ozer, T.; Akbulut, A.; Erkaya, I.; Yildiz, K.; Guler, D. Fourier Transform Infrared (FTIR) Spectroscopy for Identification of Chlorella Vulgaris Beijerinck 1890 and Scenedesmus Obliquus (Turpin) Kützing 1833. Afr. J. Biotech. 2012, 11, 3817–3824. 10.5897/AJB11.1863.
  • Al-Tameme, H. J.; Hadi, M. J.; Hameed, I. H. Phytochemical Analysis of Urtica Dioica Leaves by Fourier-Transform Infrared Spectroscopy and Gas Chromatography-Mass Spectrometry. J. Pharmacogn. Phytother. 2015, 7, 238–252. 10.5897/JPP2015.0361.
  • Khodadi, B.; Bordbar, M.; Yeganeh-Faal, A.; Nasrollahzadeh, M. Green Synthesis of Ag Nanoparticles/Clinoptilolite Using Vaccinium Macrocarpon Fruit Extract and Its Excellent Catalytic Activity for Reduction of Organic Dyes. J. Alloys Compound. 2017, 719, 82–88. DOI: 10.1016/j.jallcom.2017.05.135.
  • Saber, M. M.; Mirtajani, S. B.; Karimzadeh, K. Green Synthesis of Silver Nanoparticles Using Trapa Natans Extract and Their Anticancer Activity against A431 Human Skin Cancer Cells. J. Drug Deliv. Sci. Technol. 2018, 47, 375–379. DOI: 10.1016/j.jddst.2018.08.004.
  • Sohrabnezhad, S.; Rassa, M.; Seifi, A. Green Synthesis of Ag Nanoparticles in Montmorillonite. Mat. Lett. 2016, 168, 28–30. DOI: 10.1016/j.matlet.2016.01.025.
  • Raj, S.; Chand Mali, S.; Trivedi, R. Green Synthesis and Characterization of Silver Nanoparticles Using Enicostemma Axillare (Lam.) Leaf Extract. Biochem. Biophys. Res. Commun. 2018, 503, 2814–2819. DOI: 10.1016/j.bbrc.2018.08.045.
  • Davar, F.; Majedi, A.; Mirzaei, A. Polyvinyl Alcohol Thin Film Reinforced by Green Synthesized Zirconia Nanoparticles. Ceramic Int. 2018, 44, 19377–19382. DOI: 10.1016/j.ceramint.2018.07.167.
  • Brandenburg, K.; Seydel, U. Fourier Transform Infrared Spectroscopy of Cell Surface Polysaccharides, Fourier Transform Infrared Spectroscopy of Cell Surface Polysaccharides. In: Infrared Spectroscopy of Biomolecules; Mantsch H. H., Chapman D., Ed.; Wiley: Chichester, 1996; pp. 203–278.
  • Patil, C. K.; Jirimali, H. D.; Mahajan, M. S.; Paradeshi, J. S.; Chaudhari, B. L.; Gite, V. V. Functional anti-Corrosive and anti-Bacterial Surface Coatings Based on Mercaptosuccinic and Thiodipropionic Acids and Algae Oil as Renewable Feedstock. React. Funct. Polym. 2019, 139, 142–152. DOI: 10.1016/j.reactfunctpolym.2019.03.020.
  • Mahmoud, K. H. Synthesis, Characterization, Optical and Antimicrobial Studies of Polyvinyl Alcohol–Silver Nanocomposites. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 2015, 138, 434–440. DOI: 10.1016/j.saa.2014.11.074.
  • Li, H.-J.; Zhang, A.-Q.; Hu, Y.; Sui, L.; Qian, D.-J.; Chen, M. Large-Scale Synthesis and Self-Organization of Silver Nanoparticles with Tween 80 as a Reductant and Stabilizer. Nanoscale Res. Lett. 2012, 7, 612–625. DOI: 10.1186/1556-276X-7-612.
  • Benning, L. G.; Phoenix, V. R.; Yee, N.; Tobin, M. J. Molecular Characterization of Cynaobacterial Silification Using Synchrotron Infrared Micro-Spectroscopy. Geochim. Cosmochim. Acta. 2004, 68, 729–741. DOI: 10.1016/S0016-7037(03)00489-7.
  • Kang, F.; Alvarez, P. J.; Zhu, D. Microbial Extracellular Polymeric Substances Reduce Ag + to Silver Nanoparticles and Antagonize Bactericidal Activity. Environ. Sci. Technol. 2014, 48, 316–322. DOI: 10.1021/es403796x.
  • Oukarroum, A.; Bras, S.; Perreault, F.; Popovic, R. Inhibitory Effects of Silver Nanoparticles in Two Green Algae, Chlorella Vulgaris and Dunaliellatertiolecta. Ecotoxicol. Environ. Safe. 2012, 78, 80–85. DOI: 10.1016/j.ecoenv.2011.11.012.
  • Celebioglu, A.; Aytac, Z.; Umu, O. C.; Dana, A.; Tekinay, T.; Uyar, T. One-Step Synthesis of Size-Tunable Ag Nanoparticles Incorporated in Electrospun PVA/Cyclodextrin Nanofibers. Carbohydr. Polym. 2014, 99, 808–816. DOI: 10.1016/j.carbpol.2013.08.097.
  • Ivask, A.; Kurvet, I.; Kasemets, K.; Blinova, I.; Aruoja, V.; Suppi, S.; Vija, H.; Käkinen, A.; Titma, T.; Heinlaan, M.; et al. Size-Dependent Toxicity of Silver Nanoparticles to Bacteria, Yeast, Algae, Crustaceans and Mammalian Cells in Vitro. PLoS One. 2014, 9, e102108. DOI: 10.1371/journal.pone.0102108.
  • Navarro, E.; Piccapietra, F.; Wagner, B.; Marconi, F.; Kaegi, R.; Odzak, N.; Sigg, L.; Behra, R. Toxicity of Silver Nanoparticles to Chlamydomonas reinhardtii. Environ. Sci. Technol. 2008, 42, 8959–8964. DOI: 10.1021/es801785m.
  • Becaro, A. A.; Jonsson, C. M.; Puti, F. C.; Siqueira, M. C.; Mattoso, L. H. C.; Correa, D. S.; Ferreira, M. D. Toxicity of PVA-Stabilized Silver Nanoparticles to Algae and Microcrustaceans. Environ. Nanotech. Monitor. Manage. 2015, 3, 22–29. DOI: 10.1016/j.enmm.2014.11.002.
  • Shankar, P. D.; Shobana, S.; Karuppusamy, I.; Pugazhendhi, A.; Ramkumar, V. S.; Arvindnarayan, S.; Kumar, G. A Review on the Biosynthesis of Metallic Nanoparticles (Gold and Silver) Using Bio-Components of Microalgae: Formation Mechanism and Applications. Enzyme Microb. Technol. 2016, 95, 28–44. DOI: 10.1016/j.enzmictec.2016.10.015.
  • Balavandy, S. K.; Shameli, K.; Abidin, Z. Z. Rapid and Green Synthesis of Silver Nanoparticles via Sodium Alginate Media. Int. J. Electrochem. Sci. 2015, 10, 486–497.
  • Escobar-Hernández, J. M. A.; Escobar-Remolina, J. C. M. Silver Nanoparticles: Synthesis and Mathematical-Geometric Formulation. Nano-Struct. Nano-Object. 2019, 17, 259–268. DOI: 10.1016/j.nanoso.2019.01.005.
  • Navarro Gallón, S. M.; Alpaslan, E.; Wang, M.; Larese-Casanova, P.; Londoño, M. E.; Atehortúa, L.; Pavón, J. J.; Webster, T. J. Characterization and Study of the Antibacterial Mechanisms of Silver Nanoparticles Prepared with Microalgal Exopolysaccharides. Mater. Sci. Eng. 2019, 99, 685–695. DOI: 10.1016/j.msec.2019.01.134.
  • Qian, H.; Zhu, K.; Lu, H.; Lavoie, M.; Chen, S.; Zhou, Z.; Deng, Z.; Chen, J.; Fu, Z. Contrasting Silver Nanoparticle Toxicity and Detoxification Strategies in Microcystis aeruginosa and Chlorella Vulgaris: New Insights from Proteomic and Physiological Analyses. Sci. Total Environ. 2016, 572, 1213–1221. 10.1016/j.scitotenv.2016.08.039.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.