516
Views
33
CrossRef citations to date
0
Altmetric
Articles

Application of Co-doped copper oxide nanoparticles against different multidrug resistance bacteria

, , &
Pages 933-943 | Received 09 Nov 2019, Accepted 25 Jan 2020, Published online: 17 Feb 2020

References

  • Kumaresn, K.; Parthiban, D.; Sivanarayan, V.; Arun, N.; Kumaravel, P. Toxicity Effect of Copper Oxide Nanoparticles on Artemia Salina. Res. J. Pharmacol. Pharmacodyn. 2015, 7, 53–60. DOI: 10.5958/2321-5836.2015.00012.9.
  • Usman, M. S.; Zowalaty, M. E. E.; Shameli, K.; Zainuddin, N.; Salama, M.; Ibrahim, N. A. Synthesis, Characterization, and Antimicrobial Properties of Copper Nanoparticles. Int. J. Nanomed. 2013, 8, 4467–4479.
  • Hemalatha, T.; Akilandeswari, S. HMTA Assisted CuO Nanoparticles: Synthesis, Characterization and Its Antibacterial Application. J. Chem. Pharm. Sci. 2015, 9, 132–134.
  • El Sayed, A. M.; Shaban, M. Structural, Optical and Photocatalytic Properties of Fe and (Co, Fe) Co-Doped Copper Oxide Spin Coated Films. Spectrochim. Acta A 2015, 149, 638–646. DOI: 10.1016/j.saa.2015.05.010.
  • Devi, H. S.; Singh, T. D. Synthesis of Copper Oxide Nanoparticles by a Novel Method and Its Application in the Degradation of Methyl Orange. Adv. Electron. Electr. Eng. 2014, 4, 83–88.
  • Kannaki, K.; Ramesh, P. S.; Geetha, D. Hydrothermal Synthesis of CuO Nanostructure and Their Characterizations. Int. J. Sci. Eng. Res. 2012, 3, 1–4.
  • Kamila, S.; Venugopal, V. R. Synthesis and Structural Analysis of Different CuO Nano Particles. Int. J. Appl. Sci. Eng. 2017, 14, 133–146.
  • Taran, M.; Rad, M.; Alavi, M. Antibacterial Activity of Copper Oxide (CuO) Nanoparticles Biosynthesized by Bacillus sp. FU4: Optimization of Experiment Design. Pharm. Sci. 2017, 23, 198–206. DOI: 10.15171/PS.2017.30.
  • Padil, V. V. T.; Cernik, M. Green Synthesis of Copper Oxide Nanoparticles Using Gum Karaya as a Biotemplate and Their Antibacterial Application. Int. J. Nanomed. 2016, 8, 889–897.
  • Johnson, I.; Prabu, H. J. Flower-Shaped CuO Nanostructure Synthesized by Sonochemical Method and the Effect of NaOH Concentrations. Int. J. Adv. Res. 2015, 3, 1091–1096.
  • Son, D. I.; You, C. H.; Son, T. W. K. Synthesis, Optical and Electronic Properties of Colloidal CuO Nanoparticles Formed by Using a Colloid-Thermal Synthesis Process. Appl. Surf. Sci. 2009, 255, 8794–8797. DOI: 10.1016/j.apsusc.2009.06.056.
  • Ayoman, E.; Hossini, G.; Haghighi, N. Synthesis of CuO Nanoparticles and Study on Their Catalytic Properties. Int. J. Nanosci. Nanotechnol. 2015, 11, 63–70.
  • Ottosson, M.; Carlsson, J. O. Chemical Vapour Deposition of Cu2O and CuO from CuI and O2 or N2O. Surf. Coat. Tech. 1996, 78, 263–273. DOI: 10.1016/0257-8972(95)02415-8.
  • Yang, X.; Chen, S.; Zhao, S.; Li, D.; Ma, H. Synthesis of Copper Nanorods Using Electrochemical Methods. J. Serb. Chem. Soc. 2003, 68, 843–847. DOI: 10.2298/JSC0311843Y.
  • Shutesh, K.; Haseeb, A. S. M. A.; Johan, M. R. Low Dimensional CuO Nanocomposites Synthesis by Pulsed Wire Explosion and Their Crystal Growth Mechanism. Ceram. Int. 2014, 40, 9907–9916. DOI: 10.1016/j.ceramint.2014.02.086.
  • Das, R.; Mehta, D.; Bhardawaj, H. An Overview on Microwave Mediated Synthesis. Int. J. Res. Dev. Pharm. Life Sci. 2012, 1, 32–39.
  • Wang, H.; Xu, J. Z.; Zhu, J. J.; Chen, H. Y. Preparation of CuO Nanoparticles by Microwave Irradiation. J. Cryst. Growth 2002, 244, 88–94. DOI: 10.1016/S0022-0248(02)01571-3.
  • Rejitha, S. G.; Krishnan, C. Synthesis of Cadmium-Doped Copper Oxide Nanoparticles: Optical and Structural Characterizations. Adv. Appl. Sci. Res. 2013, 4, 103–109.
  • Basith, N. M.; Vijaya, J. J.; Kennedy, L. J.; Bououdina, M.; Hussain, S. Optical and Magnetic Properties of Co-Doped CuO Flower/Plates/Particles-Like Nanostructures. J. Nanosci. Nanotechnol. 2014, 14, 2577–2583. DOI: 10.1166/jnn.2014.8514.
  • Zhu, J.; Li, D.; Chen, H.; Yang, X.; Lu, L.; Wan, X. Highly Dispersed CuO Nanoparticles Prepared by a Novel Quick Precipitation Method. Mater. Lett. 2004, 58, 3324–3327. DOI: 10.1016/j.matlet.2004.06.031.
  • Yakout, S. M.; Sayed, A. M. E. Structural, Morphological and Ferromagnetic Properties of Pure and (Mn, Co) Codoped CuO Nanostructures. J. Supercond. Nov. Magn. 2016, 29, 2961–2968. DOI: 10.1007/s10948-016-3641-9.
  • Zhu, H. T.; Zhang, C. Y.; Tang, Y. M.; Wang, J. X. Novel Synthesis and Thermal Conductivity of CuO Nanofluid. J. Phys. Chem. C 2007, 111, 1646–1650. DOI: 10.1021/jp065926t.
  • Jeyakumari, A. P.; Ramakrishnan, M.; Nithyanandhi, Y.; Renuka, S. Structural and Anti-Bacterial Activity of Copper Oxide Nano Particles. IOSR Jap. 2017, 1, 57–63. DOI: 10.9790/4861-17002015763.
  • Zhu, H-t.; Zhang, C-y.; Yin, Y-s. Rapid Synthesis of CuO Nanoparticles by Sodium Hypophosphite Reduction in Ethylene Glycol under Microwave Irradiation. J. Cryst. Growth 2004, 270, 722–728. DOI: 10.1016/j.jcrysgro.2004.07.008.
  • Li, D.; Leung, Y. H.; Djurisic, A. B.; Liu, Z. T.; Xie, M. H.; Gao, J.; Chan, W. K. CuO Nanostructures Prepared by a Chemical Method. J. Cryst. Growth 2005, 282, 105–111. DOI: 10.1016/j.jcrysgro.2005.04.090.
  • Khmissi, H.; Sayed, A. M. E.; Shaban, M. Structural, Morphological, Optical Properties and Wettability of Spin-Coated Copper Oxide, Influences of Film Thickness, Ni, and (La, Ni) co-Doping. J. Mater. Sci. 2016, 51, 5924–5938. DOI: 10.1007/s10853-016-9894-7.
  • Basith, N. M.; Vijaya, J. J.; Kennedy, L. J.; Bououdina, M. Structural, Morphological, Optical, and Magnetic Properties of Ni Doped CuO Nanostructures Prepared by a Rapid Microwave Combustion Method. Mater. Sci. Semicond. Process. 2014, 17, 110–118. DOI: 10.1016/j.mssp.2013.09.013.
  • Hu, Z.; Zhao, F.; Pan, L.; Zhang, Y. Structural and Magnetic Properties of Mn-Doped CuO Thin Films. J. Appl. Phys. 2007, 101, 09H111–09H113. DOI: 10.1063/1.2711711.
  • Joseph, D. P.; Venkateswaran, C.; Vennila, R. S. Critical Analysis on the Structural and Magnetic Properties of Bulk and Nanocrystalline Cu-Fe-O. Adv. Mater. Sci. Eng. 2010, 12, 1–14. DOI: 10.1155/2010/715872.
  • Meneses, C.; Duque, J. G. S.; Vivas, L. G.; Knobel, M. Synthesis and Characterization of TM-Doped CuO (TM = Fe, Ni). J. Non-Cryst. Solids 2008, 354, 4830–4832. DOI: 10.1016/j.jnoncrysol.2008.04.025.
  • Viruthagiri, G.; Gopinathan, E.; Shanmugam, N.; Gobi, R. Synthesis and Characterization of ZrO2–CuO co-Doped Ceria Nanoparticles via Chemical Precipitation Method. Spectrochim. Acta Part A 2014, 131, 556–563. DOI: 10.1016/j.saa.2014.04.117.
  • Amiri, M.; Etemadifar, Z.; Daneshkazemi, A.; Nateghi, M. Antimicrobial Effect of Copper Oxide Nanoparticles on Some Oral Bacteria and Candida Species. J. Dent. Biomater. 2017, 4, 347–352.
  • Haleem, A. M.; Kadhim, A.; Abbas, R. H. Antibacterial Activity of Copper Oxide Nanoparticles against Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 25923. Adv. Nat. Appl. Sci. 2017, 11, 1–5.
  • Radhakrishnan, A.; Rejani, P.; Beena, B. Synthesis, Characterization and Antimicrobial Properties of CuO Nanoparticles against Gram-Positive and Gram-Negative Bacterial Strains. Int. J. Nano Dimensions 2014, 5, 519–524.
  • Ananth, A.; Dharaneedharan, S.; Heo, M. S.; Mok, Y. S. Copper Oxide Nanomaterials: Synthesis, Characterization and Structure-Specific Antibacterial Performance. Chem. Eng. J. 2015, 262, 179–188. DOI: 10.1016/j.cej.2014.09.083.
  • Bakravi, A.; Ahamadian, Y.; Hashemi, H.; Namazi, H. Synthesis of Gelatin-Based Biodegradable Hydrogel Nanocomposite and Their Application as Drug Delivery Agent. Adv. Polym. Technol. 2018, 37, 2625–2635. DOI: 10.1002/adv.21938.
  • Ramazanzadeh, B.; Jahanbin, A.; Yaghoubi, M.; Shahtahmassbi, N.; Ghazvini, K.; Shakeri, M.; Shafaee, H. Comparison of Antibacterial Effects of ZnO and CuO Nanoparticles Coated Brackets against Streptococcus Mutans. J. Dent. Shiraz Univ. Med. Sci. 2015, 16, 200–205.
  • Azam, A.; Ahmed, A. S.; Oves, M.; Khan, M. S.; Memic, A. Size-Dependent Antimicrobial Properties of CuO Nanoparticles against Gram-Positive and -Negative Bacterial Strains. Int. J. Nanomed. 2012, 7, 3527–3535.
  • Azam, A.; Ahmed, A. S.; Oves, M.; Khan, M. S.; Habib, S. S.; Memic, A. Antimicrobial Activity of Metal Oxide Nanoparticles against Gram-Positive and Gram-Negative Bacteria: A Comparative Study. Int. J. Nanomed. 2012, 7, 6003–6009.
  • Gate, L. F. Comparison of the Photon Diffusion Model and Kubelka-Munk Equation with the Exact Solution of the Radiative Transport Equation. Appl. Opt. 1974, 13, 236–238.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.