2,229
Views
128
CrossRef citations to date
0
Altmetric
Articles

Green synthesis of titanium dioxide (TiO2) nanoparticles by using Mentha arvensis leaves extract and its antimicrobial properties

, &
Pages 1032-1038 | Received 16 Jan 2020, Accepted 06 Feb 2020, Published online: 03 Mar 2020

References

  • Hussain, I.; Singh, N.; Singh, A.; Singh, H.; Singh, S. Green Synthesis of Nanoparticles and Its Potential Application. Biotechnol. Lett. 2016, 38, 545–560.
  • Saxena, A.; Tripathi, R. M.; Zafar, F.; Singh, P. Green Synthesis of Silver Nanoparticles Using Aqueous Solution of Ficus benghalensis Leaf Extract and Characterization of Their Antibacterial Activity. Mater. Lett. 2012, 67, 91–94. DOI: 10.1016/j.matlet.2011.09.038.
  • Fakhari, S.; Jamzad, M.; Kabiri Fard, H. Green Synthesis of Zinc Oxide Nanoparticles: A Comparison. Green Chem. Lett. Rev. 2019, 12, 19–24. DOI: 10.1080/17518253.2018.1547925.
  • Baruwati, B.; Polshettiwar, V.; Varma, R. S. Glutathione Promoted Expeditious Green Synthesis of Silver Nanoparticles in Water Using Microwaves. Green Chem. 2009, 11, 926–930. DOI: 10.1039/b902184a.
  • Hebbalalu, D.; Lalley, J.; Nadagouda, M. N.; Varma, R. S. Greener Techniques for the Synthesis of Silver Nanoparticles Using Plant Extracts, Enzymes, Bacteria, Biodegradable Polymers, and Microwaves. ACS Sustainable Chem. Eng. 2013, 1, 703–712. DOI: 10.1021/sc4000362.
  • Khalil, A. T.; Ovais, M.; Ullah, I.; Ali, M.; Shinwari, Z. K.; Khamlich, S.; Maaza, M. Bioinspired Synthesis of Pure Massicot Phase Lead Oxide Nanoparticles and Assessment of Their Biocompatibility, Cytotoxicity and in-Vitro Biological Properties. Nanomedicine 2017, 12, 1767–1789.
  • Lakshmi, J. V.; Sharath, R.; Chandraprabha, M. N.; Neelufar, E.; Abhishikta, P. Synthesis, Characterization and Evaluation of Antimicrobial Activity of Zinc Oxide Nanoparticles. J. Biochem. Technol. 2012, 3, S151–S154.
  • Thovhogi, N.; Park, E.; Manikandan, E.; Maaza, M.; Gurib-Fakim, A. Physical Properties of CdO Nanoparticles Synthesized by Green Chemistry via Hibiscus sabdariffa Flower Extract. J. Alloys Compd. 2016, 655, 314–320. DOI: 10.1016/j.jallcom.2015.09.063.
  • Singh, J.; Dutta, T.; Kim, K.-H.; Rawat, M.; Samddar, P.; Kumar, P. Green’ Synthesis of Metals and Their Oxide Nanoparticles: Applications for Environmental Remediation. J. Nanobiotechnol. 2018, 16, 1–24. DOI: 10.1186/s12951-018-0408-4.
  • Kaur, H.; Goyal, V.; Singh, J.; Kumar, S.; Rawat, M. Biomolecules Encapsulated TiO2 Nano-Cubes Using Tinospora cordifolia for Photodegradation of a Textile Dye. Micro Nano Lett. 2019, 14, 1229–1232. DOI: 10.1049/mnl.2019.0340.
  • Verma, R. S. Greener Approach to Nanomaterials and Their Sustainable Applications. Curr. Opin. Chem. Eng. 2012, 1, 123–128.
  • Kirthi, A. V.; Rahuman, A. A.; Rajakumar, G.; Marimuthu, S.; Santhoshkumar, T.; Jayaseelan, C.; Elango, G.; Abduz Zahir, A.; Kamaraj, C.; Bagavan, A. Biosynthesis of Titanium Dioxide Nanoparticles Using Bacterium Bacillus subtilis. Mater. Lett. 2011, 6, 2745–2747. DOI: 10.1016/j.matlet.2011.05.077.
  • Rajakumar, G.; Rahuman, A. A.; Priyamvada, B.; Khanna, V. G.; Kumar, D. K.; Sujin, P. J. Eclipta Prostrata Leaf Aqueous Extract Mediated Synthesis of Titanium Dioxide Nanoparticles. Mater. Lett. 2012, 68, 115–117. DOI: 10.1016/j.matlet.2011.10.038.
  • Ambika, S.; Sundrarajan, M. [EMIM] BF4 Ionic Liquid-Mediated Synthesis of TiO2 Nanoparticles Using Vitex negundo Linn Extract and Its Antibacterial Activity. J. Mol. Liq. 2016, 221, 986–992. DOI: 10.1016/j.molliq.2016.06.079.
  • Dobrucka, R.; Długaszewska, J. Biosynthesis and Antibacterial Activity of ZnO Nanoparticles Using Trifolium pratense Flower Extract. Saudi J. Biol. Sci. 2016, 23, 517–523. DOI: 10.1016/j.sjbs.2015.05.016.
  • Ismail, E.; Khenfouch, M.; Dhlamini, M.; Dube, S.; Maaza, M. Green Palladium and Palladium Oxide Nanoparticles Synthesized via Aspalathus linearis Natural Extract. J. Alloys Compd. 2017, 695, 3632–3638. DOI: 10.1016/j.jallcom.2016.11.390.
  • Singh, J.; Rathi, A.; Rawat, M.; Kumar, V.; Kim, K.-H. The Effect of Manganese Doping on Structural, Optical, and Photocatalytic Activity of Zinc Oxide Nanoparticles. Compos. Part B Eng. 2019, 166, 361–370. DOI: 10.1016/j.compositesb.2018.12.006.
  • Singh, J.; Kumar, S.; Alok, A.; Upadhyay, S. K.; Rawat, M.; Tsang, D. C. W.; Bolan, N.; Kim, K.-H. The Potential of Green Synthesized Zinc Oxide Nanoparticles as Nutrient Source for Plant Growth. J. Cleaner Prod. 2019, 214, 1061–1070. DOI: 10.1016/j.jclepro.2019.01.018.
  • Valencia, S.; Vargas, X.; Rios, L.; Restrepo, G.; Marín, J. M. Sol–Gel and Low Temperature Solvo Thermal Synthesis of Photoactive Nano-Titanium Dioxide. J. Photochem. Photobiol. A 2013, 251, 175–181. DOI: 10.1016/j.jphotochem.2012.10.025.
  • Jayaseelan, C.; Rahuman, A. A.; Roopan, S. M.; Kirthi, A. V.; Venkatesan, J.; Kim, S. K.; Iyappan, M.; Siva, C. Biological Approach to Synthesize TiO2 Nanoparticles Using Aeromonas hydrophila and Its Antibacterial Activity. Spectrochim. Acta Part A 2013, 107, 82–89. DOI: 10.1016/j.saa.2012.12.083.
  • Edmundson, M. C.; Capeness, M.; Horsfall, L. Exploring the Potential of Metallic Nanoparticles within synthetic biology. New Biotechnol. 2014, 31, 572–578. DOI: 10.1016/j.nbt.2014.03.004.
  • Dobrucka, R. Synthesis of Titanium Dioxide Nanoparticles Using Echinacea purpurea Herba (Spring 2017). Iran. J. Pharm. Res. 2017, 16, 756–762.
  • Santhoshkumar, T.; Rahuman, A. A.; Kirthi, A. V.; Kim, S. K. Green Synthesis of Titanium Dioxide Nanoparticles Using Psidium guajava Extract. Asian Pac. J. Trop. Med 2013, 5, 245–256.
  • Madadi, Z.; Lotfabad, T. B. Aqueous Extract of Acanthophyllum laxiusculum Roots as a Renewable Resource for Green Synthesis of Nano-Sized Titanium Dioxide Using Sol-Gel Method. Adv. Ceram. Prog. 2016, 2, 26–30.
  • Chatterjee, A.; Ajantha, M.; Talekar, A.; Revathy, N. A. Biosynthesis, Antimicrobial and Cytotoxic Effects of Titanium Dioxide Nanoparticles Using Vigna unguiculata Seeds. Mater. Lett. 2017, 9, 95–99.
  • Singh, M.; Singh, J.; Rawat, M.; Sharma, J.; Singh, P. P. Enhanced Photocatalytic Degradation of Hazardous Industrial Pollutants with Inorganic–Organic TiO2–SnO2–GO Hybrid Nanocomposites. J. Mater. Sci: Mater. Electron. 2019, 30, 13389–13400. DOI: 10.1007/s10854-019-01706-1.
  • Kaur, H.; Kaur, S.; Singh, J.; Rawat, M.; Kumar, S. Expanding Horizon: Green Synthesis of TiO2 Nanoparticles Using Carica papaya Leaves for Photocatalysis Application. Mater. Res. Express 2019, 6, 095034. DOI: 10.1088/2053-1591/ab2ec5.
  • Aiyegoro, O. A.; Okoh, A. I. Preliminary Phytochemical Screening and in Vitro Antioxidant Activities of the Aqueous Extract of Helichrysum longifolium DC. BMC Complement Altern. Med. 2010, 10, 21–24. DOI: 10.1186/1472-6882-10-21.
  • Ahmad, W.; Singh, S.; Kumar, S. Phytochemical Screening and Antimicrobial Study of Euphorbia hirta Extracts. J. Med. Plants Stud. 2017, 5, 183–186.
  • Senguttuvan, J.; Paulsamy, S.; Karthika, K. Phytochemical Analysis and Evaluation of Leaf and Root Parts of the Medicinal Herb, Hypochaeris radicata L. for In Vitro Antioxidant Activities. Asian Pac. J. Trop. Biomed. 2014, 4, S359–S367. DOI: 10.12980/APJTB.4.2014C1030.
  • Gul, R.; Jan, S. U.; Faridullah, S.; Sherani, S.; Jahan, N. Preliminary Phytochemical Screening, Quantitative Analysis of Alkaloids, and Antioxidant Activity of Crude Plant Extracts from Ephedra intermedia Indigenous to Balochistan. Sci. World J. 2017, 2017, 1–7. DOI: 10.1155/2017/5873648.
  • Wadood, A.; Ghufran, M.; Babar Jamal, S.; Naeem, M.; Khan, A.; Ghaffar, R. Phytochemical Analysis of Medicinal Plants Occurring in Local Area of Mardan. Biochem. Anal. Biochem. 2013, 02, 1–4. DOI: 10.4172/2161-1009.1000144.
  • Mohamed, N.; Abdelrahman, M. The Antibacterial, Antiviral Activities and Phytochemical Screening of Some Sudanese Medicinal Plants. Eurasia J. Biosci. 2010, 4, 8–16. DOI: 10.5053/ejobios.2010.4.0.2.
  • Ahmad, W.; Kumar, P.; Chaturvedi, A. K. Study the Effect of UV Light on the Antimicrobial Activity of Euphorbia hirta Leaf Extract. J. Pharmacogn. Phytochem. 2019, 8, 1737–1740.
  • Anokwuru, C. P.; Esiaba, I.; Ajibaye, O.; Adesuyi, A. O. Polyphenolic Content and Antioxidant Activity of Hibiscus sabdariffa Calyx. Res. J. Med. Plant 2011, 5, 557–566. DOI: 10.3923/rjmp.2011.557.566.
  • Charalampos, P.; Konstantina, L.; Olga, K. M.; Panagiotis, Z.; Vassileia, J. S. Antioxidant Capacity of Selected Plant Extracts and Their Essential Oils. Antioxidants 2013, 2, 11–22.
  • Subhapriya, S.; Gomathipriya, P. Green Synthesis of Titanium Dioxide (TiO2) Nanoparticles by Trigonella foenum-graecum Extract and Its Antimicrobial Properties. Microb. Pathogen. 2018, 116, 215–220. DOI: 10.1016/j.micpath.2018.01.027.
  • Sirelkhatim, A.; Mahmud, S.; Seeni, A.; Kaus, N. H. M.; Ann, L. C.; Bakhori, S. K. M.; Hasan, H.; Mohamad, D. Review on Zinc Oxide Nanoparticles: Antibacterial Activity and Toxicity Mechanism. Nano-Micro Lett. 2015, 7, 219–242. DOI: 10.1007/s40820-015-0040-x.
  • Santhoshkumar, T.; Abdul Rahuman, A.; Jayaseelan, C.; Rajakumar, G.; Marimuthu, S.; Kirthi, A. V.; Velayutham, K.; Thomas, J.; Venkatesan, J.; Kim, S. Green Synthesis of Titanium Dioxide Nanoparticles Using Psidium guajava Extract and Its Antibacterial and Antioxidant Properties. Asian Pac. J. Trop. Biomed. 2014, 7, 968–976. DOI: 10.1016/S1995-7645(14)60171-1.
  • Santhoshkumar, T.; Rahuman, A. A.; Kirthi, A. V.; Kim, S. K. Green Synthesis of Titanium Dioxide Nanoparticles Using Psidium guajava Extract. Asian Pac. J. Trop. Med. 2013, 5, 245–256.
  • Jalill, R.; D A.; Nuaman, R. S.; Abd, A. N. Biological Synthesis of Titanium Dioxide Nanoparticles by Curcuma longa Plant Extract and Study Its Biological Properties. World Sci. News 2016, 49, 204–222.
  • Rajakumar, G.; Rahuman, A. A.; Roopan, S. M.; Khanna, V. G.; Elango, G.; Kamaraj, C.; Zahir, A. A.; Velayutham, K. Fungus-Mediated Biosynthesis and Characterization of TiO2 Nanoparticles and Their Activity against Pathogenic Bacteria. Spectrochim. Acta Mol. Biomol. Spectrosc. 2012, A91, 23–29. DOI: 10.1016/j.saa.2012.01.011.
  • Konda, P. Y.; Egi, J. Y.; Dasari, S.; Katepogu, R.; Jaiswal, K. K.; Nagarajan, P. Ameliorative Effects of Mentha aquatica on Diabetic and Nephroprotective Potential Activities in STZ-Induced Renal Injury. Comp. Clin. Pathol. 2020, 29, 189–199. DOI: 10.1007/s00580-019-03042-6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.