81
Views
3
CrossRef citations to date
0
Altmetric
Articles

Crystal structure and electrocatalytic investigation of diiron azadiphosphine complex [Fe2(μ-pdt)(CO)4{(μ-Ph2P)2NH}] related to [FeFe]-hydrogenases

, & ORCID Icon
Pages 1039-1043 | Received 28 Apr 2019, Accepted 06 Feb 2020, Published online: 03 Mar 2020

References

  • Tard, C.; Pickett, C. J. Structural and Functional Analogues of the Active Sites of the [Fe]-, [NiFe]-, and [FeFe]-Hydrogenases. Chem. Rev. 2009, 109, 2245–2274.
  • Lubitz, W.; Ogata, H.; Rüdiger, O.; Reijerse, E. Hydrogenases. Chem. Rev. 2014, 114, 4081–4148.
  • Schilter, D.; Camara, J. M.; Huynh, M. T.; Hammes-Schiffer, S.; Rauchfuss, T. B. Hydrogenase Enzymes and Their Synthetic Models: The Role of Metal Hydrides. Chem. Rev. 2016, 116, 8693–8749. DOI: 10.1021/acs.chemrev.6b00180.
  • Peters, J. W.; Lanzilotta, W. N.; Lemon, B. J.; Seefeldt, L. C. X-Ray Crystal Structure of the Fe-Only Hydrogenase (Cpl) from clostridium pasteurianum to 1.8 Angstrom Resolution. Science 1998, 282, 1853–1858. DOI: 10.1126/science.282.5395.1853.
  • Nicolet, Y.; Piras, C.; Legrand, P.; Hatchikian, E. C.; Fontecilla-Camps, J. C. Desulfovibrio desulfuricans Iron Hydrogenase: The Structure Shows Unusual Coordination to an Active Site Fe Binuclear Center. Structure 1999, 7, 13–23. DOI: 10.1016/S0969-2126(99)80005-7.
  • Fontecilla-Camps, J. C.; Volbeda, A.; Cavazza, C.; Nicolet, Y. Structure/Function Relationships of [NiFe]- and [FeFe]-Hydrogenases. Chem. Rev. 2007, 107, 4273–4303. DOI: 10.1021/cr050195z.
  • Erdem, Ö. F.; Schwartz, L.; Stein, M.; Silakov, A.; Kaur-Ghumaan, S.; Huang, P.; Ott, S.; Reijerse, E. J.; Lubitz, W. A Model of the [FeFe] Hydrogenase Active Site with a Biologically Relevant Azadithiolate Bridge: A Spectroscopic and Theoretical Investigation. Angew. Chem. Int. Ed. 2011, 50, 1439–1443. DOI: 10.1002/anie.201006244.
  • Berggren, G.; Adamska, A.; Lambertz, C.; Simmons, T. R.; Esselborn, J.; Atta, M.; Gambarelli, S.; Mouesca, J. M.; Reijerse, E.; Lubitz, W.; et al. Biomimetic Assembly and Activation of [FeFe]-Hydrogenases. Nature 2013, 499, 66–69. DOI: 10.1038/nature12239.
  • Bethel, R. D.; Darensbourg, M. Y. Enzymes Activated by Synthetic Components. Nature 2013, 499, 40–41. DOI: 10.1038/nature12260.
  • Song, L. C. Investigations on Butterfly Fe/S Cluster S-centered anions (mu-S-)2Fe2(CO)6, (mu-S-)(mu-RS)Fe2(CO)6, and related species. Acc. Chem. Res. 2005, 38, 21–28.
  • Li, Y. L.; Rauchfuss, T. B. Synthesis of Diiron(I) dithiolato Carbonyl Complexes. Chem. Rev. 2016, 116, 7043–7077.
  • Zhang, X.; Zhang, T. Y.; Wang, Y. H.; Li, B.; Zhang, G. H.; Hai, L.; Jiang, S. Electrochemical Catalysis Investigation into the Dynamic Coordination Properties of a Pyridine-Substituted [2Fe2S] Model Complex. Int. J. Hydrogen Energ. 2016, 41, 22991–22996. DOI: 10.1016/j.ijhydene.2016.09.199.
  • Li, J. R.; Hu, M. Y.; Zhao, P. H.; Tian, W. J.; Xu, T. T.; Li, Y. L. Asymmetrically PNP-Chelate Diiron Ethanedithiolate Complexes Fe2(μ-Edt)(CO)4{κ2-(Ph2P)2NR} as Diiron Subsite Models of [FeFe]-Hydrogenases: Structural and Electrocatalytic Investigation. Inorg. Chim. Acta 2020, 505, 119493. DOI: 10.1016/j.ica.2020.119493.
  • Li, Q. L.; Zhang, R. F.; Ma, C. L.; Lü, S.; Mu, C.; Li, Y. L. Synthesis, Characterization, and Some Electrocatalytic Properties of Heteromultinuclear FeI/RuII Clusters. Appl. Organomet. Chem 2020, 34, e5461.
  • Hu, M. Y.; Zhao, P. H.; Li, J. R.; Gu, X. L.; Jing, X. B.; Liu, X. F. Synthesis, Structures, and Electrocatalytic Properties of Phosphine-Monodentate, -Chelate, and -Bridge Diiron 2,2-Dimethylpropanedithiolate Complexes Related to [FeFe]-Hydrogenases. Appl. Organomet. Chem. 2020, 34, e5523.
  • Li, Z. M.; Xiao, Z. Y.; Xu, F. F.; Zeng, X. H.; Liu, X. M. Enhancement in Catalytic Proton Reduction by an Internal Base in a Diiron Pentacarbonyl Complex: Its Synthesis, Characterisation, Inter-Conversion and Electrochemical Investigation. Dalton Trans. 2017, 46, 1864–1871. DOI: 10.1039/C6DT04409C.
  • He, J.; Deng, C. L.; Li, Y.; Li, Y. L.; Wu, Y.; Zou, L. K.; Mu, C.; Luo, Q.; Xie, B.; Wei, J.; et al. A New Route to the Synthesis of Phosphine-Substituted Diiron Aza- and Oxadithiolate Complexes. Organometallics 2017, 36, 1322–1330. DOI: 10.1021/acs.organomet.7b00040.
  • Abul-Futouh, H.; Almazahreh, L. R.; Harb, M. K.; Görls, H.; El-Khateeb, M.; Weigand, W. [FeFe]-Hydrogenase H-Cluster Mimics with Various -S(CH2)nS- Linker Lengths (n = 2–8): A Systematic Study. Inorg. Chem. 2017, 56, 10437–10451. DOI: 10.1021/acs.inorgchem.7b01398.
  • Lin, H. M.; Li, J. R.; Mu, C.; Li, A.; Liu, X. F.; Zhao, P. H.; Li, Y. L.; Jiang, Z. Q.; Wu, H. K. Synthesis, Characterization, and Electrochemistry of Monophosphine‐Containing Diiron Propane‐1,2‐Dithiolate Complexes Related to the Active Site of [FeFe]‐Hydrogenases. Appl. Orgaomet. Chem. 2019, 33, e5196.
  • Yu, X.; Pang, M. F.; Zhang, S. N.; Hu, X. L.; Tung, C.-H.; Wang, W. G. Terminal Thiolate-Dominated H/D Exchanges and H2 Release: Diiron Thiol-Hydride. J. Am. Chem. Soc. 2018, 140, 11454–11463. DOI: 10.1021/jacs.8b06996.
  • Ghosh, S.; Hogarth, G.; Hollingsworth, N.; Holt, K. B.; Richards, I.; Richmond, M. G.; Sanchez, B. E.; Unwin, D. Models of the Iron-Only Hydrogenase: A Comparison of Chelate and Bridge Isomers of Fe2(CO)4{Ph2PN(R)PPh2}(μ-Pdt) as Proton-Reduction Catalysts. Dalton Trans. 2013, 42, 6775–6792.
  • Adam, F. I.; Hogarth, G.; Richards, I. Models of the Iron-Only Hydrogenase: Reactions of [Fe2(CO)6(μ-Pdt)] with Small Bite-Angle Diphosphines Yielding Bridge and Chelate Diphosphine Complexes [Fe2(CO)4(Diphosphine)(μ-Pdt)]. J. Organomet. Chem. 2007, 692, 3957–3968. DOI: 10.1016/j.jorganchem.2007.05.050.
  • Sheldrick, G. M. A Short History of SHELX. Acta Crystallogr. A, Found. Crystallogr. 2008, 64, 112–122.
  • Zhao, P.-H.; Ma, Z.-Y.; Hu, M.-Y.; He, J.; Wang, Y.-Z.; Jing, X.-B.; Chen, H.-Y.; Wang, Z.; Li, Y.-L. PNP-Chelated and -Bridged Diiron Dithiolate Complexes Fe2(μ-Pdt)(CO)4{(Ph2P)2NR} Together with Related Monophosphine Complexes for the [2Fe]H Subsite of [FeFe]-Hydrogenases: Preparation, Structure, and Electrocatalysis. Organometallics 2018, 37, 1280–1287. DOI: 10.1021/acs.organomet.8b00030.
  • Ghosh, S.; Sanchez, B. E.; Richards, I.; Haque, M. N.; Holt, K. B.; Richmond, M. G.; Hogarth, G. Biomimetics of the [FeFe]-Hydrogenase Enzyme: Identification of Kinetically Favoured Apical-Basal [Fe2(CO)4(μ-H){κ2-Ph2PC(Me2)PPh2}(μ-Pdt)]+ as a Proton-Reduction Catalyst. J. Organomet. Chem. 2016, 812, 247–258.
  • Song, L. C.; Wang, Y. X.; Xing, X. K.; Ding, S. D.; Zhang, L. D.; Wang, X. Y.; Zhang, H. T. Hydrophilic Quaternary Ammonium-Group-Containing [FeFe]-Hydrogenase Models: Synthesis, Structures, and Electrocatalytic Hydrogen Production. Chem. Eur. J. 2016, 22, 16304–16314. DOI: 10.1002/chem.201603040.
  • Song, L. C.; Li, C. G.; Ge, J. H.; Yang, Z. Y.; Wang, H. T.; Zhang, J.; Hu, Q. M. Synthesis and Structural Characterization of the Mono- and Diphosphine-Containing Diiron Propanedithiolate Complexes Related to [FeFe]-Hydrogenases. Biomimetic H2 Evolution Catalyzed by (μ-PDT)Fe2(CO)4[(Ph2P)2N(n-Pr)]. J. Inorg. Biochem. 2008, 102, 1973–1979. DOI: 10.1016/j.jinorgbio.2008.04.003.
  • Song, L. C.; Luo, F. X.; Liu, B. B.; Gu, Z. C.; Tan, H. Novel Ruthenium Phthalocyanine-Containing Model Complex for the Active Site of [FeFe]-Hydrogenases: Synthesis, Structural Characterization, and Catalytic H2 Evolution. Organometallics 2016, 35, 1399–1408. DOI: 10.1021/acs.organomet.5b01040.
  • Gao, W.; Ekström, J.; Liu, J.; Chen, C.; Eriksson, L.; Weng, L.; Åkermark, B.; Sun, L. Binuclear Iron-Sulfur Complexes with Bidentate Phosphine Ligands as Active Site Models of Fe-Hydrogenase and Their Catalytic Proton Reduction. Inorg. Chem. 2007, 46, 1981–1991. DOI: 10.1021/ic0610278.
  • Fourmond, V.; Jacques, P.-A.; Fontecave, M.; Artero, V. H2 Evolution and Molecular Electrocatalysts: Determination of Overpotentials and Effect of Homoconjugation. Inorg. Chem. 2010, 49, 10338–10347. DOI: 10.1021/ic101187v.
  • Tatematsu, R.; Inomata, T.; Ozawa, T.; Masuda, H. Electrocatalytic Hydrogen Production by a Nickel(II) Complex with a Phosphinopyridyl Ligand. Angew. Chem. Int. Ed. 2016, 55, 5247–5250. DOI: 10.1002/anie.201511621.
  • Pool, D. H.; DuBois, D. L. [Ni(P2PhN2Ar)2(NCMe)][BF4]2 as an Electrocatalyst for H2 Production: P2PhN2Ar = 1,5-(Di(4-(Thiophene-3-yl)Phenyl)-3,7-Diphenyl-1,5-Diaza-3,7- Diphosphacyclooctane). J. Organomet. Chem. 2009, 694, 2858–2865. DOI: 10.1016/j.jorganchem.2009.04.010.
  • Hemming, E. B.; Chan, B.; Turner, P.; Corcilius, L.; Price, J. R.; Gardiner, M. G.; Masters, A. F.; Maschmeyer, T. [Fe(C5Ar5)(CO)2Br] Complexes as Hydrogenase Mimics for the Catalytic Hydrogen Evolution Reaction. Appl. Catal. B 2018, 223, 234–241. DOI: 10.1016/j.apcatb.2017.04.053.
  • Chong, D.; Georgakaki, I. P.; Mejia-Rodriguez, R.; Sanabria-Chinchilla, J.; Soriaga, M. P.; Darensbourg, M. Y. Electrocatalysis of Hydrogen Production by Active Site Analogues of the Iron Hydrogenase Enzyme: Structure/Function Relationships. Dalton Trans. 2003, 21, 4158–4163. DOI: 10.1039/B304283A.
  • Tye, J. W.; Lee, J.; Wang, H. W.; Mejia-Rodriguez, R.; Reibenspies, J. H.; Hall, M. B.; Darensbourg, M. Y. Dual Electron Uptake by Simultaneous Iron and Ligand Reduction in an N-Heterocyclic Carbene Substituted [FeFe] Hydrogenase Model Compound. Inorg. Chem. 2005, 44, 5550–5552. DOI: 10.1021/ic050402d.
  • Mazzoni, R.; Gabiccini, A.; Cesari, C.; Zanotti, V.; Gualandi, I.; Tonelli, D. Diiron Complexes Bearing Bridging Hydrocarbyl Ligands as Electrocatalysts for Proton Reduction. Organometallics 2015, 34, 3228–3235. DOI: 10.1021/acs.organomet.5b00274.
  • Mejia-Rodriguez, R.; Chong, D.; Reibenspies, J. H.; Soriaga, M. P.; Darensbourg, M. Y. The Hydrophilic Phosphatriazaadamantane Ligand in the Development of H2 Production Electrocatalysts: Iron Hydrogenase Model Complexes. J. Am. Chem. Soc. 2004, 126, 12004–12014. DOI: 10.1021/ja039394v.
  • Li, R. X.; Liu, X. F.; Liu, T.; Yin, Y. B.; Zhou, Y.; Mei, S. K.; Yan, J. Electrocatalytic Properties of [FeFe]-Hydrogenases Models and Visible-Light-Driven Hydrogen Evolution Efficiency Promotion with Porphyrin Functionalized Graphene Nanocomposite. Electrochim. Acta 2017, 237, 207–216. DOI: 10.1016/j.electacta.2017.03.216.
  • Zhao, P. H.; Hu, M. Y.; Li, J. R.; Ma, Z. Y.; Wang, Y. Z.; He, J.; Li, Y. L.; Liu, X. F. Influence of Dithiolate Bridges on the Structures and Electrocatalytic Performance of Small bite-Angle PNP-Chelated Diiron Complexes Fe2(μ-Xdt)(CO)4{κ2-(Ph2P)2NR} Related to [FeFe]-Hydrogenases. Organometallics 2019, 38, 385–394. DOI: 10.1021/acs.organomet.8b00759.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.