107
Views
6
CrossRef citations to date
0
Altmetric
Articles

Nano scale zerovalent nickel: Green synthesis, characterization, and efficient removal of lead from aqueous solution

ORCID Icon & ORCID Icon
Pages 1044-1052 | Received 27 Nov 2019, Accepted 06 Feb 2020, Published online: 03 Mar 2020

References

  • Hashemzadeh, M.; Nilchi, A.; Hassani, A. H. Synthesis of Novel Surface-Modified Hematite Nanoparticles for Pb(II) Ions Removal from Aqueous Solution. Mater. Chem. Phys. 2019, 227, 279–290. DOI: 10.1016/j.matchemphys.2019.02.025.
  • Ibupoto, A. S.; Qureshi, U. A.; Arain, M.; Ahmed, F.; Khatri, Z.; Brohi, R. Z.; Kim, I. S.; Ibupoto, Z. Zno/Carbon Nanofibers for Efficient Adsorption of Pb(II) from Aqueous Solutions. Environ. Technol. 2019, 1–11. DOI: 10.1080/09593330.2019.1580774.
  • Sounthararajah, D. P.; Loganathan, P.; Kandasamy, J.; Vigneswaran, S. Adsorptive Removal of Heavy Metals from Water Using Sodium Titanate Nanofibres Loaded onto GAC in Fixed-Bed Columns. J. Hazard Mater. 2015, 287, 306–316. DOI: 10.1016/j.jhazmat.2015.01.067.
  • Meepho, M.; Sirimongkol, W.; Ayawanna, J. Samaria-Doped Ceria Nanopowders for Heavy Metal Removal from Aqueous Solution. J. Mater. Chem. Phys. 2018, 214, 56–65. DOI: 10.1016/j.matchemphys.2018.04.083.
  • WHO. Guidelines for Drinking-Water Quality, 4th ed.; WHO Press, World Health Organization: Geneva, 2011.
  • UNEP. Final review of scientific information on Pb(II) Chemicals Branch, DTIE, 2010.
  • Dave, P. N.; Chopda, L. V. Application of Iron Oxide Nanomaterials for the Removal of Heavy Metals. J. Nanotechnol. 2014, 25, 1–14. DOI: 10.1155/2014/398569.
  • Chen, W.; Lu, Z.; Xiao, B.; Gu, P.; Yao, W.; Xing, J.; Asiri, A. M.; Alamry, K. A.; Wang, X.; Wang, S. Enhanced Removal of Pb(II) Ions from Aqueous Solution by Iron Oxide Nanomaterials with Cobalt and Nickel Doping. J. Cleaner Prod. 2019, 211, 1250–1258. DOI: 10.1016/j.jclepro.2018.11.254.
  • Angajala, G.; Ramya, R.; Subashini, R. In-Vitro anti-Inflammatory and Mosquito Larvicidal Efficacy of Nickel Nanoparticles Phytofabricated from Aqueous Leaf Extracts of Aegle marmelos Correa. Acta Trop. 2014, 135, 19–26. DOI: 10.1016/j.actatropica.2014.03.012.
  • Sudhasree, S.; Shakila Banu, A.; Brindha, P.; Kurian, G. A. Synthesis of Nickel Nanoparticles by Chemical and Green Route and Their Comparison in Respect to Biological Effect and Toxicity. Toxicol. Environ. Chem. 2014, 96, 743–754. DOI: 10.1080/02772248.2014.923148.
  • Pandian, C. J.; Palanivel, R.; Dhananasekaran, S. Green Synthesis of Nickel Nanoparticles Using Ocimum sanctum and Their Application in Dye and Pollutant Adsorption. Chin. J. Chem. Eng. 2015, 23, 1307–1315. DOI: 10.1016/j.cjche.2015.05.012.
  • Pandian, C. J.; Palanivel, R.; Dhanasekaran, S. Screening Antimicrobial Activity of Nickel Nanoparticles Synthesized Using Ocimum sanctum Leaf Extract. J. Nanopart. 2016, 2016, 1–13. DOI: 10.1155/2016/4694367.
  • Elango, G.; Roopan, S. M.; Dhamodaran, K. I.; Elumalai, K.; Al-Dhabi, N. A.; Arasu, M. V. Spectroscopic Investigation of Biosynthesized Nickel Nanoparticles and Its Larvicidal, Pesticidal Activities. J. Photochem. Photobiol. B. 2016, 162, 162–167. DOI: 10.1016/j.jphotobiol.2016.06.045.
  • Din, M. I.; Nabi, A. G.; Rani, A.; Aihetasham, A.; Mukhtar, M. Single Step Green Synthesis of Stable Nickel and Nickel Oxide Nanoparticles from Calotropis gigantea: Catalytic and Antimicrobial Potentials. Environ. Nanotechnol. Monit. Manage. 2018, 9, 29–36. DOI: 10.1016/j.enmm.2017.11.005.
  • Din, M. I.; Tariq, M.; Hussain, Z.; Khalid, R. Single Step Green Synthesis of Nickel and Nickel Oxide Nanoparticles from Hordeum vulgare for Photocatalytic Degradation of Methylene Blue Dye. Inorg Nano-Metal Chem. 2020, 50, 1–6.
  • Chandrasekara, N.; Shahidi, F. Effect of Roasting on Phenolic Content and Antioxidant Activities of Whole Cashew Nuts, Kernels, and Testa. J. Agric. Food Chem. 2011, 59, 5006–5014. DOI: 10.1021/jf2000772.
  • Chandrasekara, N.; Shahidi, F. Antioxidative Potential of Cashew Phenolics in Food and Biological Model Systems as Affected by Roasting. Food Chem. 2011, 129, 1388–1396. DOI: 10.1016/j.foodchem.2011.05.075.
  • Mathew, A. G.; Parpia, H. A. B. Polyphenols of Cashew Kernel Testa. J. Food Sci. 1970, 35, 140–143. DOI: 10.1111/j.1365-2621.1970.tb12123.x.
  • Trox, J.; Vadivel, V.; Vetter, W.; Stuetz, W.; Kammerer, D. R.; Carle, R.; Scherbaum, V.; Gola, U.; Nohr, D.; Biesalski, H. K. Catechin and Epicatechin in Testa and Their Association with Bioactive Compounds in Kernels of Cashew Nut (Anacardium occidentale L.). Food Chem. 2011, 128, 1094–1099. DOI: 10.1016/j.foodchem.2011.04.018.
  • Edison, T. N. J. I.; Atchudan, R.; Sethuraman, M. G.; Lee, Y. R. Reductive-Degradation of Carcinogenic Azo Dyes Using Anacardium occidentale Testa Derived Silver Nanoparticles. J. Photochem. Photobiol. B 2016, 162, 604–610. DOI: 10.1016/j.jphotobiol.2016.07.040.
  • Chandra, C.; Khan, F.; Agrawal, S.; Soni, V. K. Removal of Uranium(VI) from Aqueous Solution by Iron Nanoparticles Synthesized from Testa Extract of Annacardium occidentale: A Fluorimetric Study. Asian J. Chem. 2020, 32, 271–275. DOI: 10.14233/ajchem.2020.22287.
  • Singh, M. K.; Agarwal, A.; Gopal, R.; Swarnkar, R. K.; Kotnala, R. K. Dumbbell Shaped Nickel Nanocrystals Synthesized by a Laser Induced Fragmentation Method. J. Mater. Chem. 2011, 21, 11074–11079. DOI: 10.1039/c1jm12320c.
  • Boubatra, M.; Azizi, A.; Schmerber, G.; Dinia, A. The Influence of pH Electrolyte on the Electrochemical Deposition and Properties of Nickel Thin Films. Ionics 2012, 18, 425–432. DOI: 10.1007/s11581-011-0642-3.
  • Patterson, A. L. The Scherrer Formula for X-Ray Particle Size Determination. Phys. Rev. 1939, 56, 978–982. DOI: 10.1103/PhysRev.56.978.
  • Vahdat, A.; Ghasemi, B.; Yousefpour, M. Synthesis of Hydroxyapatite and Hydroxyapatite/Fe3O4 Nanocomposite for Removal of Heavy Metals. Environ. Nanotechnol. Monit. Manage. 2019, 12, 100233. DOI: 10.1016/j.enmm.2019.100233.
  • Nawaz, T.; Iqbal, M.; Zulfiqar, S.; Sarwar, M. I. Trimellitic Acid Functionalized Magnetite Nanoparticles for the Efficient Removal of Pb (II) and Cr (VI) from Wastewater Streams. Korean J. Chem. Eng. 2019, 36, 860–868.
  • Malik, H.; Qureshi, U. A.; Muqeet, M.; Mahar, R. B.; Ahmed, F.; Khatri, Z. Removal of Lead from Aqueous Solution Using Polyacrylonitrile/Magnetite Nanofibers. Environ. Sci. Pollut. Res. 2018, 25, 3557–3564. DOI: 10.1007/s11356-017-0706-7.
  • Saeed, A.; Ali, R. K.; Mohammad, A. M. Sorption of Heavy Metal Ions from Aqueous Solution by a Novel Cast PVA/TiO2 Nanohybrid Adsorbent Functionalized with Amine Groups. J. Ind. Eng. Chem. 2014, 20, 1656–1664.
  • Moussout, H.; Ahlafi, H.; Aazza, M.; Maghat, H. Critical of Linear and Nonlinear Equations of Pseudo-First Order and Pseudo-Second Order Kinetic Models. Karbala Int. J. Mod. Sci. 2018, 4, 244–254. DOI: 10.1016/j.kijoms.2018.04.001.
  • Ho, Y.; S.; McKay, C. Pseudo Second Order Model for Sorption Processes. Proc. Biochem. 1999, 34, 451–465. DOI: 10.1016/S0032-9592(98)00112-5.
  • Kampalanonwat, P.; Supaphol, P. Preparation and Adsorp-Tion Behavior of Aminated Electrospun Polyacrylonitrile Nanofiber Mats for Heavy Metal Ion Removal. ACS Appl. Mater. Interf. 2010, 2, 3619–3627. DOI: 10.1021/am1008024.
  • Ari, M.; Rajabi, M.; Moradi, O. Kinetics of the Adsorption of Pb (II) Ions from Aqueous Solutions by Graphene Oxide and Thiol Functionalized Graphene Oxide. J Mol Liq. 2015, 209, 50–57. DOI: 10.1016/j.molliq.2015.05.022.
  • Komárek, M.; Koretsky, C. M.; Stephen, K. J.; Alessi, D. S.; Chrastný, V. Competitive Adsorption of Cd (II), Cr (VI), and Pb (II) onto Nanomaghemite: A Spectroscopic and Modeling Approach. Environ. Sci. Technol. 2015, 49, 12851–12859. DOI: 10.1021/acs.est.5b03063.
  • Wang, P.; Du, M.; Zhu, H.; Bao, S.; Yang, T.; Zou, M. Structure Regulation of Silica Nanotubes and Their Adsorption Behaviors for Heavy Metal Ions: pH Effect, Kinetics, Isotherms and Mechanism. J. Hazard. Mater. 2015, 286, 533–544. DOI: 10.1016/j.jhazmat.2014.12.034.
  • Chang, J.; Wang, J.; Qu, J.; Li, Y.; Ma, L.; Wang, L.; Wang, X; Pan, K. Preparation of α-Fe2O3/Poly-Acrylonitrile Nanofiber Mat as an Effective Lead Adsorbent. Environ. Sci.: Nano 2016, 3, 894–901. DOI: 10.1039/C6EN00088F.
  • Mallakpour, S.; Madani, M. Functionalized-MnO2/Chitosan Nanocomposites: A Promising Adsorbent for the Removal of Lead Ions. Carbohydr. Polym. 2016, 147, 53–59. DOI: 10.1016/j.carbpol.2016.03.076.
  • Sani, H. A.; Ahmad, M. B.; Hussein, M. Z.; Ibrahim N. A.; Musa, A.; Saleh T. A. Nanocomposite of ZnO with Montmorillonite for Removal of Lead and Copperions from Aqueous Solutions. Process Saf. Env. Prot. 2017, 109, 97–105. DOI: 10.1016/j.psep.2017.03.024.
  • Mishra, S.; Verma, N. Surface Ion Imprinting-Mediated Carbon Nanofiber-Grafted Highly Porous Polymeric Beads: Synthesis and Application towards Selective Removal of Aqueous Pb (II). Chem. Eng. J. 2017, 313, 1142–1151. DOI: 10.1016/j.cej.2016.11.006.
  • Shalaby, T. I.; El-Kady, M. F.; Abd El Halem, M. Z.; El-Kholy, S. M. Preparation and Application of Magnetite Nanoparticles Immobilized on Cellulose Acetate Nanofibers for Lead Removal from Polluted Water. Water Sci. Technol. Water Supply 2017, 17, 176–187. DOI: 10.2166/ws.2016.124.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.