118
Views
2
CrossRef citations to date
0
Altmetric
Articles

An efficient synthesis of highly substituted functionalized pyrroles via a four-component coupling reaction catalyzed by Fe(III)-Schiff base/SBA-15

, , &
Pages 1213-1220 | Received 17 Oct 2019, Accepted 24 Feb 2020, Published online: 03 Apr 2020

References and notes

  • Bellina, F.; Rossi, R. Synthesis and Biological Activity of Pyrrole, Pyrroline and Pyrrolidine Derivatives with Two Aryl Groups on Adjacent Positions. Tetrahedron 2006, 62, 7213–7256.
  • Williams, N. A.; Bowen, J. L.; Al-Jayyoussi, G.; Gumbleton, M.; Allender, C. J.; Li, J.; Harrah, T.; Raja, A.; Joshi, H. B. An Ex Vivo Investigation into the Transurothelial Permeability and Bladder Wall Distribution of the Nonsteroidal Anti-Inflammatory Ketorolac. Mol. Pharmaceutics 2014, 11, 673–682.
  • Cozzi, P.; Mongelli, N. Cytotoxics Derived from Distamycin A and Congeners. Curr. Pharm. Des. 1998, 4, 181–201.
  • FuÈrstner, A.; Szillat, H.; Gabor, B.; Mynott, R. Platinium and Acid-Catalyzed Enyne Metathesis Reactions: Mechanistic Studies and Applications to the Syntheses of Streptorubin B and Metacycloprodigiosin J. Am. Chem. Soc. 1998, 120, 8305.
  • Pelkey, E. T. Five-Membered Ring Systems: Pyrroles and Benzo Derivatives. Prog. Heterocycl. Chem. 2005, 17, 109.
  • Knorr, L. Synthese von Pyrrolderivaten. Ber. Dtsch. Chem. Ges. 1884, 17, 1635–1642.
  • Banik, B. K.; Samajdar, S.; Banik, I. Simple Synthesis of Substituted Pyrroles†. J. Org. Chem. 2004, 69, 213–216.
  • Merkul, E.; Boersch, C.; Frank, W.; MüLler, T. J. J. Three-Component Synthesis of N -Boc-4-Iodopyrroles and Sequential One-Pot Alkynylation∥. Org. Lett. 2009, 11, 2269–2272.
  • Balme, G. Pyrrole Syntheses by Multicomponent Coupling Reactions. Angew. Chem. Int. Ed. 2004, 43, 6238–6241.
  • Dhawan, R.; Arndtsen, B. A. Palladium-Catalyzed Multicomponent Coupling of Alkynes, Imines, and Acid Chlorides: A Direct and Modular Approach to Pyrrole Synthesis. J. Am. Chem. Soc. 2004, 126, 468–469.
  • Bharadwaj, A. R.; Scheidt, K. A. Catalytic Multicomponent Synthesis of Highly Substituted Pyrroles Utilizing a One-Pot Sila-Stetter/Paal − Knorr Strategy. Org. Lett. 2004, 6, 2465–2468.
  • Crucianelli, M.; Bizzarri, M. B.; Saladino, R. SBA-15 Anchored Metal Containing Catalysts in the Oxidative Desulfurization Process. Catalysts 2019, 9, 984.
  • Bardajee, G. R.; Malakooti, R.; Abtin, I.; Atashin, H. Palladium Schiff-Base Complex Loaded SBA-15 as a Novel Nanocatalyst for the Synthesis of 2,3-Disubstituted Quinoxalines and Pyridopyrazine Derivatives. Micropor. Mesopor. Mater. 2013, 169, 67–74.
  • Bardajee, G. R.; Malakooti, R.; Jami, F.; Parsaei, Z.; Atashin, H. Covalent Anchoring of copper-Schiff Base Complex into SBA-15 as a Heterogeneous Catalyst for the Synthesis of Pyridopyrazine and Quinoxaline Derivatives. Catal. Commun. 2012, 27, 49–53.
  • Malakooti, R.; Rezanejade Bardajee, G.; Hadizadeh, S.; Atashin, H.; Khanjari, H. An Iron Schiff Base Complex Loaded Mesoporous Silica Nanoreactor as a Catalyst for the Synthesis of Pyrazine-Based Heterocycles. Transition Met. Chem. 2014, 39, 47–54.
  • Malakooti, R.; Bardajee, G. R.; Mahmoudi, H.; Kakavand, N. Zirconium Schiff-Base Complex Modified Mesoporous Silica as an Efficient Catalyst for the Synthesis of Nitrogen Containing Pyrazine Based Heterocycles. Catal. Lett. 2013, 143, 853–861.
  • Motamedi, R.; Bardajee, G. R.; Shakeri, S. Facile One-Pot Synthesis of Chromeno[4,3-b] Quinoline Derivatives Catalyzed by Cu (II)- Schiff Base/SBA-15. Heterocycl. Commun. 2014, 20, 181.
  • Fu, L.; Gribble, W. G.; A Simple Synthesis of 2,2-Bipyrroles from Pyrrole. Tetrahedron Lett. 2008, 49, 7352. .
  • Sobhani, S.; Bazrafshan, M.; Delluei, A. A.; Parizi, Z. P. Phospha-Michael Addition of Diethyl Phosphite to α,β-Unsaturated Malonates Catalyzed by Nano γ-Fe2O3-Pyridine Based Catalyst as a New Magnetically Recyclable Heterogeneous Organic Base. Appl. Catal. A Gen. 2013, 454, 145–151.
  • Nair, V.; Vinod, A. U.; Rajesh, C. A Novel Synthesis of 2-Aminopyrroles Using a Three-Component Reaction. J. Org. Chem. 2001, 66, 4427–4429.
  • Shen, T.; Fu, Z.; Che, F.; Dang, H.; Lin, Y.; Song, Q. An Efficient One-Pot Four-Component Synthesis of 5H-Spiro[Benzo[7,8]Chromeno[2,3-c]Pyrazole-7,3′-Indoline]-2′,5,6(9H)-Trione Derivatives Catalyzed by MgCl2. Tetrahedron Lett. 2015, 56, 1072–1075.
  • Li, B. L.; Li He, P.; Fang, X. N.; Li, C. X.; Sun, J. L.; Mo, L. P.; Zhang, Z. H. One-Pot Four-Component Synthesis of Highly Substituted Pyrroles in Gluconic Acid Aqueous Solution. Tetrahedron 2013, 69, 7011–7018.
  • Bayat, M.; Nasri, S.; Notash, B. Synthesis of New 3-Cyanoacetamide Pyrrole and 3-Acetonitrile Pyrrole Derivatives. Tetrahedron 2017, 73, 1522–1527.
  • Zhao, M. N.; Ren, Z. H.; Yang, D. S.; Guan, Z. H. Iron-Catalyzed Radical Cycloaddition of 2 H -Azirines and Enamides for the Synthesis of Pyrroles. Org. Lett. 2018, 20, 1287–1290.
  • Guchhait, S. K.; Sisodiya, S.; Saini, M.; Shah, Y. V.; Kumar, G.; Daniel, D. P.; Hura, N.; Chaudhary, V. Synthesis of Polyfunctionalized Pyrroles via a Tandem Reaction of Michael Addition and Intramolecular Cyanide-Mediated Nitrile-to-Nitrile Condensation. J. Org. Chem. 2018, 83, 5807–5815.
  • Motamedi, R.; Ebrahimi, F.; Rezanejade Bardajee, G. Cu(II)-Schiff base /SBA-15 as an Efficient Catalyst for Synthesis of Benzopyrano[3,2-c] Chromene-6,8-Dione Derivatives. Asian J. Green Chem. 2019, 3, 22.
  • Zhao, D.; Huo, Q.; Feng, J.; Chmelka, B. F.; Stucky, G. D. Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures. J. Am. Chem. Soc. 1998, 120, 6024–6036.
  • Masteri, F.; Farzaneh, M. F.; Ghandi, M. Synthesis and Characterization of Molybdenum Complexes with Bidentate Schiff Base Ligands within Nano Reactors of MCM-41 as Epoxidation Catalysts. J. Mol. Catal. A Chem. 2006, 248, 53.
  • Lim, M. H.; Stein, A.; Comparative Studies of Grafting and Direct Syntheses of Inorganic -Organic Hybrid Mesoporous Materials. Chem. Mater. 1999, 11, 3285.
  • Silveira, C. C.; Mendes, S. R.; Martins, G. M.; Schlösser, S. C.; Kaufman, T. S. Modular CeCl3·7H2O-Catalyzed Multi-Component Synthesis of 1,2,3,4-Tetrasubstituted Pyrroles under Microwave Irradiation and Their Further Trichloroisocyanuric Acid-Mediated Conversion into 5-Sulfenylpyrrole Derivatives. Tetrahedron 2013, 69, 9076–9085.
  • Sukhendu, M.; Srijit, B.; Umasish, J. Iron (Iii) Catalyzed Four Component Coupling Reaction Of 1,3-Dicarbonyl Compound Amines, Aldehydes, And Nitroalkanes A Simple And Direct Synthesis Of Functionalized Pyrroles. J. Org. Chem. 2010, 75, 1674.
  • Ablimit, A.; Qicai, X.; Aijun, L.; Ming, Z.; Yixiang, C.; Chengjian, Z. Gold Catalyzed Cascade C-C And C-N Bond Formation: Synthesis Of Polysunstituted Indolequinones And Pyrroles.Tetrahedron Lett. 2013, 54, 5898.
  • Sarkar, S.; Bera, K.; Maiti, S.; Biswas, S.; Jana, U. Three Component Coupling Synthesis of Diversely Substituted N-Aryl Pyrroles Catalyzed by Iron (III) Chloride. Synth. Commun. 2013, 11, 1563.
  • Huisgen, R.; Gotthardt, H.; Bayer, H.O.; Schaefer, F.C. A New Type of Mesoionic Aromatic Compound and its 1,3-Dipolar Cycloaddition Reactions with Acetylen Derivatives. Angew. Chem. Int. Ed. 1964, 76, 185.
  • Li, B. L.; Hu, H. C.; Mo, L. P.; Zhang, Z. H. Nano CoFe2O4 Supported Antimony (III) as an Efficient and Recyclable Catalyst for One-Pot Three Component Synthesis of Multisubstituted Pyrroles. RSC Adv. 2014, 25, 12929.
  • Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G. H.; Chmelka, B.; Stucky, G. D. Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores. Science 1998, 279, 548–552.
  • Chisem, I. C.; Rafelt, J.; Shieh, M. T.; Chisem, J.; Clark, J. H.; Jachuck, R.; Macquarrie, D.; Ramshaw, C.; Scott, K. Catalytic Oxidation of Alkyl Aromatics Using a Novel Silica Supported Schiff Base Complex. Chem. Commun. 1998, 18, 1949.
  • Reddy, G. R.; Reddy, T. R.; Joseph, S. C.; Reddy, K. S.; Pal, M. Iodine Catalyzed Four-Component Reaction: A Straightforward One-Pot Synthesis of Functionalized Pyrroles under Metal-Free Conditions. RSC Adv. 2012, 2, 3387.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.