138
Views
3
CrossRef citations to date
0
Altmetric
Articles

Synthesis of CeO2/PPy composites for use in the electrocatalytic detection of nitrite

, , , , , , & show all
Pages 1308-1314 | Received 25 Aug 2019, Accepted 10 Mar 2020, Published online: 05 Apr 2020

References

  • Zhao, Z. J.; Wang, R. Y.; Zhao, Q. L.; Wang, E. P.; Su, H. Q.; Zeng, S. H. CuO/CeO2 and CuO/PrO2-CeO2 Catalysts for Preferential Oxidation of CO. Adv. Mat. Res. 2013, 773, 601–605. DOI: 10.4028/www.scientific.net/AMR.773.601.
  • Liu, I. T.; Hon, M. H.; Teoh, L. G. Structure and Optical Properties of CeO2 Nanoparticles Synthesized by Precipitation. J. Electron. Mater. 2013, 42, 2536–2541. DOI: 10.1007/s11664-013-2617-9.
  • Di, J. F.; Wu, X. C.; Chen, X. Fabrication of PA-6 Fiber Mixed with Nanometer ZnO and CeO2 with UV Radiation Resistance. Adv. Mat. Res. 2013, 785–786, 646–650. DOI: 10.4028/www.scientific.net/AMR.785-786.646.
  • Yu, L. X.; Chen, Y. J.; Bu, J. L.; Chen, J. X.; Wang, Z. F. Influence of CeO2 Nanopowder on Crystallization Behavior and Sintering Performance of Fused Quartz Ceramic Materials. Adv. Mat. Res. 2011, 415–417, 1060–1063. DOI: 10.4028/www.scientific.net/AMR.415-417.1060.
  • Hu, C. H.; Xia, C. H.; Wang, F.; Zhou, M.; Yin, P. F.; Han, X. Y. Synthesis of Mn-Doped CeO2 Nanorods and Their Application as Humidity Sensors. Bull. Mater. Sci. 2011, 34, 1033–1037. DOI: 10.1007/s12034-011-0129-x.
  • Saha, S.; Arya, S. K.; Singh, S. P.; Sreenivas, K.; Malhotra, B. D.; Gupta, V. Nanoporous Cerium Oxide Thin Film for Glucose Biosensor. Biosens. Bioelectron. 2009, 24, 2040–2045. DOI: 10.1016/j.bios.2008.10.032.
  • Zhang, D. E.; Wu, W.; Ni, X. J.; Cao, X. Y.; Zhang, X. B.; Xu, X. Y.; Li, S. Z.; Han, G. Q.; Ying, Al.; Tong, Z. W. Fabrication and Characterization of Novel Bowknot-like CeO2 Crystallites and Applications for Methyl-Orange Sensors. J. Mater. Sci. 2009, 44, 3344–3348. DOI: 10.1007/s10853-009-3301-6.
  • Laosiripojana, N.; Assabumrungrat, S. Catalytic Steam Reforming of Ethanol over High Surface Area CeO2: The Role of CeO2 as an Internal Pre-Reforming Catalyst. Appl. Catal. B. 2006, 66, 29–39. DOI: 10.1016/j.apcatb.2006.01.011.
  • Slostowski, C.; Marre, S.; Babot, O.; Toupance, T.; Aymonier, C. Effect of Thermal Treatment on the Textural Properties of CeO2 Powders Synthesized in near- and Supercritical Alcohols. ChemPhysChem 2015, 16, 3493–3499. DOI: 10.1002/cphc.201500570.
  • Li, C.; Liu, X.; Lu, G.; Wang, Y. Redox Properties and CO2 Capture Ability of CeO2 Prepared by a Glycol Solvothermal Method, Chin. J. Catal. 2014, 35, 1364–1375. DOI: 10.1016/S1872-2067(14)60163-7.
  • Hahn, K. R.; Iannuzzi, M.; Seitsonen, A. P.; Hutter, J. Coverage Effect of the CO2 Adsorption Mechanisms on CeO2 (111) by First Principles Analysis. J. Phys. Chem. C. 2013, 117, 1701–1711. DOI: 10.1021/jp309565u.
  • Dejhosseini, M.; Aida, T.; Watanabe, M.; Takami, S.; Hojo, D.; Aoki, N.; Arita, T.; Kishita, A.; Adschiri, T. Catalytic Cracking Reaction of Heavy Oil in the Presence of Cerium Oxide Nanoparticles in Supercritical Water. Energy Fuels 2013, 27, 4624–4631. DOI: 10.1021/ef400855k.
  • Feng, Y. J.; Liu, L. L.; Wang, X. D. Hydrothermal Synthesis and Automotive Exhaust Catalytic Performance of CeO2 Nanotube Arrays. J. Mater. Chem. 2011, 21, 15442–15448. DOI: 10.1039/c1jm12747k.
  • Zhao, X. B.; You, J.; Lu, X. W.; Chen, Z. G. Hydrothermal Synthesis, Characterization and Property of CeO2 Nanotube. J. Inorg. Mater. 2011, 26, 159–164. DOI: 10.3724/SP.J.1077.2011.00159.
  • Zhang, D. E.; Zhang, X. J.; Ni, X. M.; Song, J. M.; Zheng, H. G. Optical and Electrochemical Properties of CeO2 Spindles. ChemPhysChem 2006, 7, 2468–2470. DOI: 10.1002/cphc.200600388.
  • Mao, C. M.; Zhong, Y.; Xuan, Z. W.; Gai, C.; Guo, Z.; Du, F. Controllable Synthesis and Electrochemical Behavior of Micro/Nano Octahedron Ceria. Integr. Ferroelectr. 2015, 163, 89–97. DOI: 10.1080/10584587.2015.1041360.
  • Yan, L.; Yu, R. B.; Chen, J.; Xing, X. Template-Free Hydrothermal Synthesis of CeO2 Nano-Octahedrons and Nanorods: Investigation of the Morphology Evolution. Cryst. Growth Des. 2008, 8, 1474–1477. DOI: 10.1021/cg800117v.
  • Liu, X.; Yang, H.; Han, L.; Liu, W.; Zhang, C.; Zhang, X.; Wang, S.; Yang, Y. Mesoporous-Shelled CeO2 Hollow Nanospheres Synthesized by a One-Pot Hydrothermal Route and Its Catalysis Performance. CrystEngComm 2013, 15, 7769–7775. DOI: 10.1039/c3ce40959g.
  • Liu, W.; Liu, X.; Feng, L.; Guo, J.; Xie, A.; Wang, S.; Zhang, J.; Yang, Y. The Synthesis of CeO2 Nanospheres with Different Hollowness and Size Induced by Copper Doping. Nanoscale 2014, 6, 10693–10700. DOI: 10.1039/C4NR02485K.
  • Zhang, J. C.; Yang, H. X.; Wang, S. P.; Liu, W.; Liu, X.; Guo, J.; Yang, Y. Mesoporous CeO2 Nanoparticles Assembled by Hollow Nanostructures: Formation Mechanism and Enhanced Catalytic Properties. CrystEngComm 2014, 16, 8777–8785. DOI: 10.1039/C4CE01219D.
  • Jiao, Y.; Wang, F.; Ma, X.; Tang, Q.; Wang, K.; Guo, Y.; Yang, L. Facile One-Step Synthesis of Porous Ceria Hollow Nanospheres for Low Temperature CO Oxidation. Microporous Mesoporous Mater. 2013, 176, 1–7. DOI: 10.1016/j.micromeso.2013.03.031.
  • Chronakis, I. S.; Grapenson, S.; Jakob, A. Conductive Polypyrrole Nanofibers via Electrospinning: Electrical and Morphological Properties. Polymer 2006, 47, 1597–1603. DOI: 10.1016/j.polymer.2006.01.032.
  • Zhou, H.; Han, G.; Xiao, Y.; Chang, Y.; Zhai, H.-J. Facile Preparation of Polypyrrole/Graphene Oxide Nanocomposites with Large Areal Capacitance Using Electrochemical Codeposition for Supercapacitors. J. Power Sour. 2014, 263, 259–267. DOI: 10.1016/j.jpowsour.2014.04.039.
  • Zhou, H.; Han, G.; Xiao, Y.; Chang, Y.; Zhai, H.-J. A Comparative Study on Long and Short Carbon Nanotubes-Incorporated Polypyrrole/Poly(Sodium 4-Styrenesulfonate) Nanocomposites as High-Performance Supercapacitor Electrodes. Synth. Met. 2015, 209, 405–411. DOI: 10.1016/j.synthmet.2015.08.014.
  • Zhou, H.; Han, G. One-Step Fabrication of Heterogeneous Conducting Polymers-Coated Graphene Oxide/Carbon Nanotubes Composite Films for High-Performance Supercapacitors. Electrochim. Acta. 2016, 192, 448–455. DOI: 10.1016/j.electacta.2016.02.015.
  • Zhou, H.; Zhai, H.-J.; Zhi, X. Enhanced Electrochemical Performances of Polypyrrole/Carboxyl Graphene/Carbon Nanotubes Ternary Composite for Supercapacitors. Electrochim. Acta. 2018, 290, 1–11. DOI: 10.1016/j.electacta.2018.09.039.
  • Xiao, X.; Wang, Y.; Cheng, H.; Cui, Y.; Xu, Y.; Yang, T.; Zhang, D.; Xu, X. Porous Flower-like Ni5P4 for Non-Enzymatic Electrochemical Detection of Glucose. Mater. Chem. Phys. 2020, 240, 122202. DOI: 10.1016/j.matchemphys.2019.122202.
  • Salimi, A.; Teymourian, H.; Khezrian, S. Fe3O4 Magnetic Nanoparticles/Reduced Graphene Oxide Nanosheets as a Novel Electrochemical and Bioeletrochemical Sensing Platform. Biosens. Bioelectron. 2013, 49, 1–8. DOI: 10.1016/j.bios.2013.04.034.
  • Zhang, Y.; Zhao, Y.; Yuan, S.; Wang, H.; He, C. Electrocatalysis and Detection of Nitrite on a Reduced Graphene/Pd Nanocomposite Modified Glassy Carbon Electrode. Sens. Actuat. B. 2013, 185, 602–607. DOI: 10.1016/j.snb.2013.05.059.
  • Song, Y.; Ma, Y.; Wang, Y.; Di, J.; Tu, Y. Electrochemical Deposition of Gold-Platinum Alloy Nanoparticles on an Indium Tin Oxide Electrode and Their Electrocatalytic Applications. Electrochim. Acta. 2010, 55, 4909–4914. DOI: 10.1016/j.electacta.2010.03.089.
  • Ye, D.; Luo, L.; Ding, Y.; Chen, Q.; Liu, X. A Novel Nitrite Sensor Based on Graphene/Polypyrrole/Chitosan Nanocomposite Modified Glassy Carbon Electrode. Analyst 2011, 136, 4563–4569. DOI: 10.1039/c1an15486a.
  • Wang, X.; Wang, T.; Liu, D.; Guo, J.; Liu, P. Synthesis and Electrochemical Performance of CeO2/PPy Nanocomposites: Interfacial Effect. Ind. Eng. Chem. Res. 2016, 55, 866–874. DOI: 10.1021/acs.iecr.5b03891.
  • Xiao, X.; Wang, Y. H.; Tan, W.; Liu, H. J.; Duan, Y. Y.; Zhang, X. B.; Zhang, D. E.; Jiang, Y. X.; Wang, J.; Gong, J. Y.; et al. Simple Synthesis of Multilayer-Shaped CeO2 Nanomaterial and Its Electrochemical Detection of Clenbuterol. Electroanalysis 2018, 30, 2744–2747. DOI: 10.1002/elan.201800507.
  • Yang, C.; Liu, P. Core-Shell Attapulgite@Polypyrrole Composite with Well-Defined Corn Cob-like Morphology via Self-Assembling and in situ Oxidative Polymerization. Synth. Met. 2009, 159, 2056–2062. DOI: 10.1016/j.synthmet.2009.07.022.
  • Yang, C.; Liu, P.; Guo, J. S.; Wang, Y. P. Polypyrrole/Vermiculite Nanocomposites via Self-Assembling and in situ Chemical Oxidative Polymerization. Synth. Met. 2010, 160, 592–598. − DOI: 10.1016/j.synthmet.2009.12.012.
  • Šljukić, B.; Banks, C. E.; Crossley, A.; Compton, R. G. Copper Oxide–Graphite Composite Electrodes: Application to Nitrite Sensing. Electroanalysis 2007, 19, 79–84. DOI: 10.1002/elan.200603708.
  • Zhu, X.; Kang, G.; Lin, X. Pd Cu Alloy Nanoclusters: Generation and Activity Tuning for Electrocatalytic Oxidation of Nitrite. Microchim. Acta. 2007, 159, 141–148. DOI: 10.1007/s00604-007-0737-8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.