205
Views
6
CrossRef citations to date
0
Altmetric
Articles

Caffeine-mediated synthesis of CuO nanoparticles: characterization, morphology changes, and bactericidal activity

, &
Pages 174-181 | Received 21 Feb 2020, Accepted 22 Apr 2020, Published online: 25 May 2020

References

  • Moradnia, F.; Fardood, S. T.; Ramazani, A.; Vinod Kumar, G. Green Synthesis of Recyclable MgFeCrO4 Spinel Nanoparticles for Rapid Photodegradation of Direct Black 122 Dye. J. Photoch. Photobio. A 2020, 392, 112433. DOI: 10.1016/j.jphotochem.2020.112433.
  • Fardood, S. T.; Ramazani, A.; Moradnia, F.; Afshari, Z.; Ganjkhanlu, S.; Yekke Zare, F. Green Synthesis of ZnO Nanoparticles via Sol-Gel Method and Investigation of Its Application in Solvent-Free Synthesis of 12-Aryl-Tetrahydrobenzo[α]Xanthene-11-One Derivatives under Microwave Irradiation. Chem. Method 2019, 3, 696–706.
  • Fardood, S. T.; Ramazani, A.; Joo, S. W. Sol-Gel Synthesis and Characterization of Zinc Oxide Nanoparticles Using Black Tea Extract. J. Appl. Chem. Res. 2017, 11, 8–17.
  • Ramazani, A.; Fardood, S. T.; Hosseinzadeh, Z.; Sadri, F.; Joo, S. W. Green Synthesis of Magnetic Copper Ferrite Nanoparticles Using Tragacanth Gum as a Biotemplate and Their Catalytic Activity for the Oxidation of Alcohols. Iran. J. Catal. 2017, 7, 181–185.
  • Atrak, K.; Ramazani, A.; Fardood, S. T. Green Synthesis of Amorphous and Gamma Aluminum Oxide Nanoparticles by Tragacanth Gel and Comparison of Their Photocatalytic Activity for the Degradation of Organic Dyes. J. Mater. Sci. Mater. Electron. 2018, 29, 8347–8353. DOI: 10.1007/s10854-018-8845-2.
  • Fardood, S. T.; Forootan, R.; Moradnia, F.; Afshari, Z.; Ramazani, A. Green Synthesis, Characterization, and Photocatalytic Activity of Cobalt Chromite Spinel Nanoparticles. Mater. Res. Express. 2020, 7, 015086. DOI: 10.1088/2053-1591/ab6c8d.
  • Moradnia, F.; Ramazani, A.; Fardood, S. T.; Gouranlou, F. A Novel Green Synthesis and Characterization of Tetragonal-Spinel MgMn2O4 Nanoparticles by Tragacanth Gel and Studies of its Photocatalytic Activity for Degradation of Reactive Blue 21 Dye under Visible Light. Mater. Res. Express. 2019, 6, 075057. DOI: 10.1088/2053-1591/ab17bc.
  • Yeganeh, M. S.; Reza Kazemizadeh, A.; Ramazani, A.; Eskandari, P.; Angourani, H. R. Plant-Mediated Synthesis of Cu0.5Zn0.5Fe2O4 Nanoparticles Using Minidium leavigatum and Their Applications as an Adsorbent for Removal of Reactive Blue 222 Dye. Mater. Res. Express. 2020, 6, 1250f4. DOI: 10.1088/2053-1591/ab6637.
  • Fardood, S. T.; Moradnia, F.; Mostafaei, M.; Afshari, Z.; Faramarzi, V.; Ganjkhanlu, S. Biosynthesis of MgFe2O4 Magnetic Nanoparticles and Their Application in Photodegradation of Malachite Green Dye and Kinetic Study. Nanochem. Res. 2019, 4, 86–93.
  • Suresh, Y.; Annapurna, S.; Singh, A. K.; Bhikshamaiah, G. Green Synthesis and Characterization of Tea Decoction Stabilized Copper Nanoparticles. Int. J. Innov. Res.Sci. Eng. Technol. 2014, 3, 11265–11270.
  • Peternela, J.; Silva, M. F.; Vieira, M. F.; Bergamasco, R.; Salcedo Vieira, A. M. Synthesis and Impregnation of Copper Oxide Nanoparticles on Activated Carbon Through Green Synthesis for Water Pollutant Removal. Mater. Res. 2018, 21, e20160460.
  • Chen, H.; Zhao, G.; Liu, Y. Low-Temperature Solution Synthesis of CuO Nanorods with Thin Diameter. Mater. Lett. 2013, 93, 60–63. DOI: 10.1016/j.matlet.2012.11.055.
  • Chang, Y. N.; Zhang, M.; Xia, L.; Zhang, J.; Xing, G. The Toxic Effects and Mechanisms of CuO and ZnO Nanoparticles. Materials 2012, 5, 2850–2871. DOI: 10.3390/ma5122850.
  • Sankar, R.; Manikandan, P.; Malarvizhi, V.; Fathima, T.; Shivashangari, K. S.; Ravikumar, V. Green Synthesis of Colloidal Copper Oxide Nanoparticles Using Carica Papaya and Its Application in Photocatalytic Dye Degradation. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 121, 746–750. DOI: 10.1016/j.saa.2013.12.020.
  • Sorbiun, M.; Shayegan, E.; Ali, M. Green Synthesis of Zinc Oxide and Copper Oxide Nanoparticles Using Aqueous Extract of Oak Fruit Hull (Jaft) and Comparing Their Photocatalytic Degradation Of Basic Violet 3. Int. J. Environ. Res. 2018, 12, 29–37
  • Vishveshvar, K.; Krishnan, M. V. A.; Haribabu, K.; Vishnuprasad, S. Green Synthesis of Copper Oxide Nanoparticles Using Ixiro coccinea Plant Leaves and Its Characterization. BioNanoSci. 2018, 8, 554–537. DOI: 10.1007/s12668-018-0508-5.
  • Yugandhar, P.; Vasavi, T.; Jayavardhana Rao, Y.; Uma Maheswari Devi, P.; Narasimha, G.; Savithramma, N. Cost Effective, Green Synthesis of Copper Oxide Nanoparticles Using Fruit Extract of Syzygium alternifolium (Wt.) Walp., Characterization and Evaluation of Antiviral Activity. J. Clust. Sci. 2018, 29, 743–755. DOI: 10.1007/s10876-018-1395-1.
  • Shayegan, E.; Mina, M.; Ali, S.; Saeid, R.; Fardood, T. Plant-Mediated Synthesis of Zinc Oxide and Copper Oxide Nanoparticles by Using Ferulago angulata (schlecht) Boiss Extract and Comparison of Their Photocatalytic Degradation of Rhodamine B (RhB) under Visible Light Irradiation. J. Mater. Sci. Mater. Electron. 2018, 29, 1333–1340.
  • Hemmati, S.; Mehrazin, L.; Hekmati, M.; Izadi, M.; Veisi, H. Biosynthesis of CuO Nanoparticles Using Rosa canina Fruit Extract as a Recyclable and Heterogeneous Nanocatalyst for C-N Ullmann Coupling Reactions. Mater. Chem. Phys. 2018, 214, 527–532. DOI: 10.1016/j.matchemphys.2018.04.114.
  • Sharma, B. L.; Shah, D. V.; Roy, D. R. Green Synthesis of CuO Nanoparticles Using Azadirachta indica and Its Antibacterial Activity for Medicinal Applications. Mater. Res. Express. 2018, 5, 095033. doi:MRX-109160.R1 DOI: 10.1088/2053-1591/aad91d.
  • Sharmila, G.; Sakthi Pradeep, R.; Sandiy, K.; Santhiya, S.; Muthukumaran, C.; Jeyanthi, J.; Manoj Kumar, N.; Thirumarimurugan, M. Biogenic Synthesis of CuO Nanoparticles Using Bauhinia tomentosa Leaves Extract: Characterization and Its Antibacterial Application. J. Mol. Struct. 2018, 1165, 288–292. DOI: 10.1016/j.molstruc.2018.04.011.
  • Galan, C. R.; Silva, M. F.; Mantovani, D.; Bergamasco, R.; Vieira, M. F. Green Synthesis of Copper Oxide Nanoparticles Impregnated on Activated Carbon Using Moringa oleifera Leaves Extract for the Removal of Nitrates from Water. Can. J. Chem. Eng. 2018, 96, 2378–2379. DOI: 10.1002/cjce.23185.
  • Buazar, F.; Sweidi, S.; Badri, M.; Kroushawi, F. Biofabrication of Highly Pure Copper Oxide Nanoparticles Using Wheat Seed Extract and Their Catalytic Activity: A Mechanistic Approach. Green Process Synth. 2019, 8, 691–702. DOI: 10.1515/gps-2019-0040.
  • Maham, M.; Sajadi, S. M.; Kharimkhani, M. M.; Nasrollahzadeh, M. Biosynthesis of the CuO Nanoparticles Using Euphorbia chamaesyce Leaf Extract and Investigation of Their Catalytic Activity for the Reduction of 4-Nitrophenol. IET Nanobiotechnol. 2017, 11, 766–772. DOI: 10.1049/iet-nbt.2016.0254.
  • Ananda Murthy, H. C.; Abebe, B.; C H, P.; Shantaveerayya, K. A Review on Green Synthesis and Applications of Cu and CuO Nanoparticles. Mat. Sci. Res. India 2018, 15, 279–295. DOI: 10.13005/msri/150311.
  • Fardood, S. T. ;A.; Ramazani, A.; Joo, S. W. Green Chemistry Approach for the Synthesis of Copper Oxide Nanoparticles Using Tragacanth Gel and Their Structural Characterization. J. Struct. Chem. 2018, 59, 482–486. DOI: 10.1134/S0022476618020324.
  • Nehlig, A.; Daval, J. L.; Debry, G. Caffeine and the Central Nervous System: Mechanisms of Action, Biochemical, Metabolic and Psycho Stimulant Effects. Brain Res. Brain Res. Rev. 1992, 17, 139–170. DOI: 10.1016/0165-0173(92)90012-B.
  • Glade, M. J. Caffeine-Not Just a Stimulant. Nutrition 2010, 26, 932–938. DOI: 10.1016/j.nut.2010.08.004.
  • Baratloo, A.; Rouhipour, A.; Forouzanfar, M. M.; Safari, S.; Amiri, M.; Negida, A. The Role of Caffeine in Pain Management: A Brief Literature Review. Anesth. Pain Med. 2016, 6, e33193. DOI: 10.5812/aapm.33193.
  • Fardood, S. T.; Ramazani, A. Green Synthesis and Characterization of Copper Oxide Nanoparticles Using Coffee Powder Extract. J. Nanostruct. 2016, 6, 167–171.
  • Fardood, S. T.; Ramazani, A. Black Tea Extract Mediated Green Synthesis of Copper Oxide Nanoparticles. J. Appl. Chem. Res. 2018, 12, 8–15.
  • Subramanian, R.; Murugan, P.; Chinnadurai, G.; Ponmurugan, K.; Al-Dhabi, N. A. Experimental Studies on Caffeine Mediated Synthesis of Hydroxyapatite Nanorods and Their Characterization. Mater. Res. Express. 2020, 7, 015022. DOI: 10.1088/2053-1591/ab619a.
  • Elango, M.; Deepa, M.; Subramanian, R.; Saraswathy, G. Effect of Piperine on Size, Shape and Morphology of Hydroxyapatite Nanoparticles Synthesized by the Chemical Precipitation Method. Mater. Chem. Phys. 2018, 216, 305–315. DOI: 10.1016/j.matchemphys.2018.05.049.
  • Paradkar, M. M.; Irudayaraj, J. A Rapid FTIR Spectroscopic Method for Estimation of Caffeine in Soft Drinks and Total Methylxanthines in Tea and Coffee. J Food Sci. 2002, 67, 2507–2511. DOI: 10.1111/j.1365-2621.2002.tb08767.x.
  • Prakash, S.; Elavarasan, N.; Venkatesan, A.; Subashini, K.; Sowndharya, M.; Sujatha, V. Green Synthesis of Copper Oxide Nanoparticles and Its Effective Applications in Biginelli Reaction, BTB Photodegradation and Antibacterial Activity. Adv. Powder Tech. 2018, 29, 3315–3326. DOI: 10.1016/j.apt.2018.09.009.
  • Thekkae Padil, V. V.; Černík, M. Green Synthesis of Copper Oxide Nanoparticles Using Gum Karaya as a Biotemplate and Their Antibacterial Application. Int. J. Nanomed 2013, 8, 889–898.
  • Liu, P.; Li, Z.; Cai, W.; Fang, M.; Luo, X. Fabrication of Cuprous Oxide Nanoparticles by Laser Ablation in PVP Aqueous Solution. RSC Adv. 2011, 1, 847–851. DOI: 10.1039/c1ra00261a.
  • Kuppusamy, P.; Ilavenil, S.; Srigopalram, S.; Maniam, G. P.; Yusoff, M. M.; Govindan, N.; Choi, K. C. Treating of Palm Oil Mill Effluent Using Commelina nudiflora Mediated Copper Nanoparticles as a Novel Bio-Control Agent. J. Clean. Prod. 2017, 141, 1023–1029. DOI: 10.1016/j.jclepro.2016.09.176.
  • Bhattacharjee, A.; Ahmaruzzaman, M. CuO Nanostructures: Facile Synthesis and Applications for Enhanced Photodegradation of Organic Compounds and Reduction of p-Nitrophenol from Aqueous Phase. RSC Adv. 2016, 6, 41348–41363. DOI: 10.1039/C6RA03624D.
  • Angeline Mary, A. P.; Thaminum Ansari, A.; Subramanian, R. Sugarcane Juice Mediated Synthesis of Copper Oxide Nanoparticles, Characterization and Their Antibacterial Activity. J. King Saud Uni. Sci. 2019, 31, 1103–1114. DOI: 10.1016/j.jksus.2019.03.003.
  • Subramanian, R.; Sathish, S.; Murugan, P.; Mohamed Musthafa, A.; Elango, M. Effect of Piperine on Size, Shape and Morphology of Hydroxyapatite Nanoparticles Synthesized by the Chemical Precipitation Method. J. King Saud Uni. Sci. 2019, 31, 667–673. DOI: 10.1016/j.jksus.2018.01.002.
  • Nagajyothi, P. C.; Muthuraman, P.; Sreekanth, T. V. M.; Hwan Kim, D.; Shim, J. Green Synthesis: In-Vitro Anticancer Activity of Copper Oxide Nanoparticles against Human Cervical Carcinoma Cells. Arab. J. Chem. 2017, 10, 215–225. DOI: 10.1016/j.arabjc.2016.01.011.
  • Sasikala, S.; Ganesh, V.; Seong, J. K. Biosynthesis of Copper Oxide (CuO) Nanowires and Their Use for the Electrochemical Sensing of Dopamine. Nanomaterials 2018, 8, 823.
  • Munawar, K.; Mansoor, M. A.; Basirun, W. J.; Misran, M.; Huang, N. M.; Mazhar, M. Single Step Fabrication of CuO–MnO–2TiO2 Composite Thin Films with Improved Photoelectrochemical Response. RSC Adv. 2017, 7, 15885–15893. DOI: 10.1039/C6RA28752B.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.