269
Views
11
CrossRef citations to date
0
Altmetric
Articles

Synthesis and characterization of MgFe2O4 and MgFe2O4/rGO nanocomposites for the photocatalytic degradation of methylene blue

, , &
Pages 210-217 | Received 07 Feb 2020, Accepted 22 Apr 2020, Published online: 27 May 2020

References

  • Sharma, M.; Behl, K.; Nigam, S.; Joshi, M. TiO2–GO Nanocomposites for Photocatalysis and Environmental Applications: A Green Synthesis Approach. Vacuum 2018, 156, 434–439. DOI: 10.1016/j.vacuum.2018.08.009.
  • Sabet, M.; Saeednia, S.; Ardakani, M. H.; Sheykhisarem, R. Surface Adsorption of Lead Ions and Degradation of an Organic Dye with An Photocatalyst Synthesized via A Simple Hydrothermal Method. Nano-Struct. Nano-Objects 2018, 13, 21–29. DOI: 10.1016/j.nanoso.2017.11.003.
  • Pazarlioglu, N. K.; Urek, R. O.; Ergun, F. Biodecolourization of Direct Blue 15 by Immobilized Phanerochaete chrysosporium. Process Biochem. 2005, 40, 1923–1929. DOI: 10.1016/j.procbio.2004.07.005.
  • Saranraj, P.; Sumathi, V.; Reetha, D.; Stella, D. Decolourization and Degradation of Dirct Azo Dyes and Biodegradation of Textile Dye Effluent by Using Bacteria Isolated from Textile Dye Effluent. J. Ecobiotechnol. 2010, 2, 7–11.
  • Elango, G.; Elango, S.; Rathik, G. Physico-Chemical Parameters of Textile Dyeing Effluent and Its Impacts with Case Study. Int. J. Res. Chem. Environ. 2017, 7, 17–24.
  • Amini, M.; Ashrafi, M. Photocatalytic Degradation of Some Organic Dyes under Solar Light Irradiation Using TiO2 and ZnO Nanoparticles. Nano. Chem. Res. 2016, 1, 79–86.
  • Liang, C. Z.; Sun, S. P.; Li, F. Y.; Ong, Y. K.; Chung, T. S. Treatment of Highly Concentrated Waste Water Containing Multiple Synthetic Dyes by a Combined Process of Coagulation/Flocculation and Nanofiltration. J. Membrane. Sci. 2014, 469, 306–315. DOI: 10.1016/j.memsci.2014.06.057.
  • Sharma, M.; Joshi, M.; Nigam, S.; Shree, S.; Avasthi, D. K.; Adelung, R.; Srivastava, S. K.; Mishra, Y. K. ZnO Tetrapods and Activated Carbon Based Hybrid Composite: Adsorbents for Enhanced Decontamination of Hexavalent Chromium from Aqueous Solution. Chem. Eng. J. 2019, 358, 540–551. DOI: 10.1016/j.cej.2018.10.031.
  • Sharma, G.; Kumar, A.; Naushad, M.; Pathania, D.; Sillanpää, M. Polyacrylamide@Zr(IV) Vanadophosphate Nanocomposite: Ion Exchange Properties, Antibacterial Activity, and Photocatalytic Behaviour. J. Ind. Eng. Chem. 2016, 33, 201–208. DOI: 10.1016/j.jiec.2015.10.011.
  • Robertson, P. K. J. Semiconductor Photo Catalysis an Environmentally Acceptable Alternative Production Technique and Effluent Treatment Process. J. Cleaner Prod. 1996, 4, 203–212. DOI: 10.1016/S0959-6526(96)00044-3.
  • Krishnan, R.; Chenthamarakshan, C. R.; Scott, G.; Miljana, D. Titania-Based Heterogonous Photocatalysis. Materials, Mechanistic Issues, and Implications for Environmental Remediation. Pure Appl. Chem. 2001, 73, 1849–1860. DOI: 10.1351/pac200173121849.
  • Kudo, A. Photocatalyst Materials for Water Splitting. Catal. Surv. Asia 2003, 7, 31–38. DOI: 10.1023/A:1023480507710.
  • Tan, T.; Li, Y.; Liu, Y.; Wang, B.; Song, X.; Li, E.; Wang, H.; Yan, H. Two-Step Preparation of Ag/Tetrapod-like ZnO with Photocatalytic Activity by Thermal Evaporation and Sputtering. Mater. Chem. Phys. 2008, 111, 305–308. DOI: 10.1016/j.matchemphys.2008.04.013.
  • Ge, L.; Zuo, F.; Liu, J.; Ma, Q.; Wang, C.; Sun, D.; Bartels, L.; Feng, P. Synthesis and Efficient Visible Light Photocatalytic Hydrogen Evolution of Polymeric g-C3N4 Coupled with CdS Quantum Dots. J. Phys. Chem. C 2012, 116, 13708–13714. DOI: 10.1021/jp3041692.
  • Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides. Science 2001, 293, 269–271. DOI: 10.1126/science.1061051.
  • Zheng, X.; Zhang, J.; Peng, L.; Yang, X.; Cao, W. The Effects of Electronic Structure of Non-Metallic Doped TiO2 Anode and Co-Sensitization on the Performance of Dye-Sensitized Solar Cells. J. Mater. Sci. 2011, 46, 5071–5078. DOI: 10.1007/s10853-011-5433-8.
  • Wu, P. G.; Ma, C. H.; Shang, J. K. Effects of Nitrogen Doping on Optical Properties of TiO2 Thin Films. Appl. Phys. A 2005, 81, 1411–1417. DOI: 10.1007/s00339-004-3101-4.
  • Jiang, D.; Xu, Y.; Wu, D.; Sun, Y. Photocatalytic Functional Materials for Environmental Remediation. J. Solid State Chem. 2008, 181, 593–602. DOI: 10.1016/j.jssc.2008.01.004.
  • Meng, F.; Hong, Z.; Arndt, J.; Li, M.; Zhi, M.; Yang, F.; Wu, N. Visible Light Photocatalytic Activity of Nitrogen-Doped La2Ti2O7. Nanosheets Originating from Band Gap Narrowing. Nano Res. 2012, 5, 213–221. DOI: 10.1007/s12274-012-0201-x.
  • McDermott, E. J.; Kurmaev, E. Z.; Boyko, T. D.; Finkelstein, L. D.; Green, R. J.; Maeda, K.; Domen, K.; Moewes, A. Structural and Band Gap Investigation of GaN:ZnO Heterojunction Solid Solution Photocatalyst Probed by Soft X-Ray Spectroscopy. J. Phys. Chem. C 2012, 116, 7694–7700. DOI: 10.1021/jp301231p.
  • Shakir, I.; Shahid, M.; Kang, D. J. MoO3 and Cu0.33MoO3 Nanorods for Unprecedented UV/Visible Light Photocatalysis. Chem. Commun. (Camb.) 2010, 46, 4324–4326. DOI: 10.1039/c000003e.
  • Tada, H.; Jin, Q.; Nishijima, H.; Yamamoto, H.; Fujishima, M.; Okuoka, S.-I.; Hattori, T.; Sumida, Y.; Kobayashi, H. Titanium(IV) Dioxide Surface‐Modified with Iron Oxide as a Visible Light Photocatalyst. Angew. Chem. Int. Ed. Engl. 2011, 50, 3501–3505. DOI: 10.1002/anie.201007869.
  • Hamaloğlu, K. Ö.; Sağ, E.; Tuncel, A. Bare Gold and Silver Nanoparticle Decorated Monodisperse-Porous Titania Microbeads for Photocatalytic Dye Degradation in a Newly Constructed Microfluidic Photocatalytic Packed-Bed Reactor. J. Photochem. Photobiol., A Chem. 2017, 332, 60–65. DOI: 10.1016/j.jphotochem.2016.08.015.
  • Chandraboss, V. L.; Kamalakkannan, J.; Senthilvelan, S. Synthesis of Activated Charcoal Supported Bi-Doped TiO2 Nanocomposite Under Solar Light Irradiation for Enhanced Photocatalytic Activity. Appl. Surf. Sci. 2016, 387, 944–956. DOI: 10.1016/j.apsusc.2016.06.110.
  • Singh, S.; Joshi, M.; Panthari, P.; Malhotra, B.; Kharkwal, A. C.; Kharkwal, H. Citrulline Rich Structurally Stable Zinc Oxide Nanostructures for Superior Photo Catalytic and Optoelectronic Applications: A Green Synthesis Approach. Nano-Struct. Nano-Objects 2017, 11, 1–6. DOI: 10.1016/j.nanoso.2017.05.006.
  • Yuan, X.; Wang, H.; Wu, Y.; Chen, X.; Zeng, G.; Leng, L.; Zhang, C. A Novel SnS2–MgFe2O4/Reduced Graphene Oxide Flower-like Photocatalyst: Solvothermal Synthesis, Characterization and Improved Visible-Light Photocatalytic Activity. Catal. Commun. 2015, 61, 62–66. DOI: 10.1016/j.catcom.2014.12.003.
  • Wang, S.; Li, D.; Yang, C.; Sun, G.; Zhang, J.; Xia, Y.; Xie, C.; Yang, G.; Zhou, M.; Liu, W. A Novel Method for the Synthesize of Nanostructured MgFe2O4 Photocatalysts. J. SolGel Sci. Technol. 2017, 84, 169–179. DOI: 10.1007/s10971-017-4471-3.
  • Zhang, L.; Ni, C.; Jiu, H.; Xie, C.; Yan, J.; Qi, G. One-Pot Synthesis of Ag–TiO2/Reduced Graphene Oxide Nanocomposite for High Performance of Adsorption and Photocatalysis. Ceram. Int. 2017, 43, 5450–5456. DOI: 10.1016/j.ceramint.2017.01.041.
  • Haldorai, Y.; Kim, B. K.; Jo, Y. L.; Shim, J. J. Ag@Graphene Oxide Nanocomposite as an Efficient Visible-Light Plasmonic Photocatalyst for the Degradation of Organic Pollutants: A Facile Green Synthetic Approach. Mater. Chem. Phys. 2014, 143, 1452–1461. DOI: 10.1016/j.matchemphys.2013.11.065.
  • Liu, G.; Han, K.; Zhou, Y.; Ye, H.; Zhang, X.; Hu, J.; Li, X. Facile Synthesis of Highly Dispersed Ag Doped Graphene Oxide/Titanate Nanotubes as a Visible Light Photocatalytic Membrane for Water Treatment. ACS Sustain. Chem. Eng. 2018, 6, 6256–6263. DOI: 10.1021/acssuschemeng.8b00029.
  • Ohnishi, H.; Teranishi, T. Crystal Distortion in Copper Ferrite-Chromite Series. J. Phys. Soc. Jpn. 1961, 16, 35–43. DOI: 10.1143/JPSJ.16.35.
  • Chidambareswaran, P. K.; Sreenivasan, S.; Patil, N. B. Quantitative Analysis of Crystalline Phases in Chemically Treated Cotton Fibers. Text. Res. J. 1987, 57, 219–222. DOI: 10.1177/004051758705700406.
  • Shitre, A. R.; Kawade, V. B.; Bichile, G. K.; Jadhav, K. M. X-Ray Diffraction and Dielectric Study of Co1−xCdxFe2−xCrxO4 Ferrite System. Mater. Lett. 2002, 56, 188–193. DOI: 10.1016/S0167-577X(02)00438-X.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.