135
Views
3
CrossRef citations to date
0
Altmetric
Article

Effect of temperature on structural and optical properties of iron sulfide nanocrystals prepared from tris(N-methylbenzyldithiocarbamato) iron(III) complex

&
Pages 322-331 | Received 29 May 2019, Accepted 07 Jun 2020, Published online: 08 Jul 2020

References

  • Han, X.; Xu, K.; Taratula, O.; Farsad, K. Applications of Nanoparticles in Biomedical Imaging. Nanoscale 2019, 11, 799–819. DOI: 10.1039/c8nr07769j.
  • Sheikholeslami, M.; Mahian, O. Enhancement of PCM Solidification Using Inorganic Nanoparticles and an External Magnetic Field with Application in Energy Storage Systems. J. Clean. Prod 2019, 215, 963–977. DOI: 10.1016/j.jclepro.2019.01.122.
  • Wicke, W.; Ahmadzadeh, A.; Jamali, V.; Unterweger, H.; Alexiou, C.; Schober, R. Magnetic Nanoparticle-Based Molecular Communication in Microfluidic Environments. IEEE Trans. Nanobioscience. 2019, 18, 156–169. DOI: 10.1109/TNB.2019.2895244.
  • Yu, Y.; Shi, Y.; Zhang, B. Synergetic Transformation of Solid Inorganic-Organic Hybrids into Advanced Nanomaterials for Catalytic Water Splitting. Acc. Chem. Res. 2018, 51, 1711–1721. DOI: 10.1021/acs.accounts.8b00193.
  • Hasan, S. A Review on Nanoparticles: Their Synthesis and Types. Res. J. Recent Sci 2015, 2277, 2502.
  • Smith, A. M.; Nie, S. Semiconductor Nanocrystals: Structure, Properties, and Band Gap Engineering. Acc. Chem. Res. 2010, 43, 190–200. DOI: 10.1021/ar9001069.
  • Safdar, A.; Islam, M.; Ahmad, I.; Akram, A.; Mujahid, M.; Khalid, Y.; Zhu, Y. Quantum Confinement and Size Effects in Cu 2 ZnSnS 4 Thin Films Produced Using Solution Processed Ultrafine Nanoparticles. Mater. Sci. Semicond. Process 2016, 41, 420–427. DOI: 10.1016/j.mssp.2015.09.027.
  • Sahu, M. K. Semiconductor Nanoparticles Theory and Applications. Int. J. Appl. Eng. Res 2019, 14, 491–494.
  • Moussaoui, M.; Saoudi, R.; Lesnichiy, I.; Tishchenko, A. V. Optical Measurements of ZnS Nanoparticles Aqueous Solution. J. Quant. Spectrosc. Radiat. Transfer 2011, 112, 1792–1795. DOI: 10.1016/j.jqsrt.2011.02.006.
  • Abdullah, N. H.; Zainal, Z.; Silong, S.; Tahir, M. I. M.; Tan, K.-B.; Chang, S.-K. Synthesis of Zinc Sulphide Nanoparticles from Thermal Decomposition of Zinc N-Ethyl Cyclohexyl Dithiocarbamate Complex. Mater. Chem. Phys. 2016, 173, 33–41. DOI: 10.1016/j.matchemphys.2016.01.034.
  • Chen, J.; Javaheri, H.; Al-Chikh Sulaiman, B.; Dahman, Y. Fabrication and Self-Assembly of Nanobiomaterials. Applications of Nanobiomaterials Volume 1. Chapter 1-Synthesis, Characterization and Applications of Nanoparticles. 2016, 1, 1–27. Elsevier, Amsterdam. DOI: 10.1016/B978-0-323.41533-0.00001-5.
  • Daniel, M.-C.; Astruc, D. Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology. Chem. Rev. 2004, 104, 293–346. DOI: 10.1021/cr030698.
  • Mukherjee, S.; Maiti, R.; Midya, A.; Das, S.; Ray, S. K. Tunable Direct Bandgap Optical Transitions in MoS 2 Nanocrystals for Photonic Devices. Acs Photonics 2015, 2, 760–768. DOI: 10.1021/acsphotonics.5b00111.
  • Pu, C.; Qin, H.; Gao, Y.; Zhou, J.; Wang, P.; Peng, X. Synthetic Control of Exciton Behavior in Colloidal Quantum Dots. J. Am. Chem. Soc. 2017, 139, 3302–3311. DOI: 10.1021/jacs.6b11431.
  • Han, W.; Gao, M. Investigations on Iron Sulfide Nanosheets Prepared via a Single-Source Precursor Approach. Cryst. Growth Des 2008, 8, 1023–1030. DOI: 10.1021/cg701075u.
  • Badshah, A.; Hussain, R. A. Synthesis of Iron Chalcogenides from Single Source Precursors. Appl. Organomet. Chem. 2016, 30, 783–795. DOI: 10.1002/aoc.3501.
  • Roffey, A.; Hollingsworth, N.; Islam, H.-U.; Bras, W.; Sankar, G.; de Leeuw, N. H.; Hogarth, G. Fe(II and Fe(III) Dithiocarbamate Complexes as Single Source Precursors to Nanoscale Iron Sulfides: A Combined Synthetic and in Situ XAS Approach. Nanoscale Adv. 2019, 1, 2965–2978. DOI: 10.1039/C9NA00262F.
  • Wei, S.; Liu, Y.; Ma, M.; Wu, Y.; Huang, L.; Pan, D. Thin-Shell CdSe/ZnCdS Core/Shell Quantum Dots and Their Electroluminescent Device Application. J. Mater. Chem. C 2018, 6, 11104–11110. DOI: 10.1039/C8TC03906B.
  • Beal, J. H.; Etchegoin, P. G.; Tilley, R. D. Transition Metal Polysulfide Complexes as Single-Source Precursors for Metal Sulfide Nanocrystals. J. Phys. Chem. C 2010, 114, 3817–3821. DOI: 10.1021/jp910354q.
  • Botha, N. L.; Ajibade, P. A. Effect of Temperature on Crystallite Sizes of Copper Sulfide Nanocrystals Prepared from Copper(II) Dithiocarbamate Single Source Precursor. Mater. Sci. Semicond. Process. 2016, 43, 149–154. DOI: 10.1016/j.mssp.2015.12.006.
  • Pawar, A. S.; Masikane, S. C.; Mlowe, S.; Garje, S. S.; Revaprasadu, N. Preparation of CdS Nanoparticles from Thiosemicarbazone Complexes: Morphological Influence of Chlorido and Iodido Ligands. Eur. J. Inorg. Chem. 2016, 2016, 366–372. DOI: 10.1002/ejic.201501125.
  • Singh, A.; Viswanath, V.; Janu, V. Synthesis, Effect of Capping Agents, Structural, Optical and Photoluminescence Properties of ZnO Nanoparticles. J. Lumin. 2009, 129, 874–878. DOI: 10.1016/j.jlumin.2009.03.027.
  • Paca, A. M.; Ajibade, P. A. Synthesis and Structural Studies of Iron Sulphide Nanocomposites Prepared from Fe(III) Dithiocarbamates Single Source Precursors. Mater. Chem. Phys. 2017, 202, 143–150. DOI: 10.1016/j.matchemphys.2017.09.012.
  • Paca, A. M.; Ajibade, P. A. Synthesis, Optical and Structural Studies of Iron Sulphides Nanoparticles and Iron Sulphides Hydroxylethyl Cellulose Nanocomposites from Bis(dithiocarbamato)Iron(II) Single-Source Precursors. Nanomaterials 2018, 8,187. DOI: 10.3390/nano8040187.
  • Ajibade, P. A.; Paca, A. M. Tris(Dithiocarbamato)Iron(III) Complexes as Precursors for Iron Sulfide Nanocrystals and Iron Sulfide-Hydroxyethyl Cellulose Composites. J. Sulfur. Chem. 2019, 40, 52–64. DOI: 10.1080/17415993.2018.1521411.
  • Ajibade, P. A.; Paca, A. M. The Effects of Temperature on Iron Sulfide Nanocrystals Prepared from Thermal Decomposition of Bis-(N-Methylbenzyldithiocarbamato)Iron(II) Complex. J. Inorg. Organomet. Polym. 2020, 30, 1327–1338. DOI: 10.1007/s10904-019-01264-3.
  • Ramalingam, K.; Srinivasan, S. Synthesis, Spectral, Single Crystal X-Ray Structural, CShM and BVS Characterization of Iron(III) Cyclohexyl Dithiocarbamates and Their Solvothermal Decomposition to Nano Iron(II) Sulphide. J. Mol. Struct. 2015, 1100, 290–298. DOI: 10.1016/j.molstruc.2015.07.036.
  • Bunaciu, A. A.; UdriŞTioiu, E. G.; Aboul-Enein, H. Y. X-Ray Diffraction: instrumentation and Applications. Crit. Rev. Anal. Chem. 2015, 45, 289–299. DOI: 10.1080/10408347.2014.949616.
  • Suryanarayana, C.; Norton, M. G. X-Ray Diffraction: A Practical Approach, Springer Science & Business Media, New York 2013.
  • Sibokoza, S.; Moloto, M.; Moloto, N.; Sibiya, P. The Effect of Temperature and Precursor Concentration on the Synthesis of Cobalt Sulphides Nanoparticles using Cobalt diethyldithiocarbamate complex. Chalc. Lett. 2017, 14, 69–78.
  • Viezbicke, B. D.; Patel, S.; Davis, B. E.; Birnie, D. P. Evaluation of the Tauc Method for Optical Absorption Edge Determination: ZnO Thin Films as a Model System. Phys. Status Solidi B 2015, 252, 1700–1710. DOI: 10.1002/pssb.201552007.
  • Ming-Dong, W.; Dao-Yun, Z.; Yi, L.; Lin, Z.; Chang-Xi, Z.; Zhen-Hui, H.; Di-Hu, C.; Li-Shi, W. Determination of Thickness and Optical Constants of ZnO Thin Films Prepared by Filtered Cathode Vacuum Arc Deposition. Chinese Phys. Lett. 2008, 25, 743–746. DOI: 10.1088/0256-307X/25/2/106.
  • Mbese, J. Z.; Ajibade, P. A. Synthesis, Spectroscopic, Structural and Optical Studies of Ru 2 S 3 Nanoparticles Prepared from Single-Source Molecular Precursors. J. Mol. Struct. 2017, 1143, 274–281. DOI: 10.1016/j.molstruc.2017.04.095.
  • Zhang, Z.; Yang, R. Novel Nanocomposites Based on Hydroxyethyl Cellulose and Graphene Oxide. Fibers Polym. 2017, 18, 334–341. DOI: 10.1007/s12221-017-6901-9.
  • Zulkifli, F. H.; Hussain, F. S. J.; Zeyohannes, S. S.; Rasad, M. S. B. A.; Yusuff, M. M. A Facile Synthesis Method of Hydroxyethyl Cellulose-Silver Nanoparticle Scaffolds for Skin Tissue Engineering Applications. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 79, 151–160. DOI: 10.1016/j.msec.2017.05.028.
  • Ahmed, H. B.; Attia, M. A.; El-Dars, F. M.; Emam, H. E. Hydroxyethyl Cellulose For Spontaneous Synthesis of Antipathogenic Nanostructures: (Ag & Au) Nanoparticles Versus Ag-Au Nano-Alloy. Int. J. Biol. Macromol. 2019, 128, 214–229. DOI: 10.1016/j.ijbiomac.2019.01.093.
  • Narayanamma, A.; Rao, K. C. Biosynthesis of Silver Sulphides Nanoparticles Using Papaya Fruit Extract. IOSR J. Polym. Text. Eng. 2016, 3, 26–33.
  • Eissa, A. M.; Khosravi, E.; Cimecioglu, A. L. A versatile method for functionalization and grafting of 2-hydroxyethyl cellulose (HEC) via click chemistry. Carbohydr. Polym. 2012, 90, 859–869. DOI: 10.1016/j.carbpol.2012.06.012.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.