101
Views
0
CrossRef citations to date
0
Altmetric
Article

Determination and evaluation components affecting the characteristics of synthesized of Au nanorods by the UV–vis spectrophotometer, dynamic light scattering, and scanner

ORCID Icon & ORCID Icon
Pages 374-382 | Received 19 Dec 2018, Accepted 07 Jun 2020, Published online: 14 Jul 2020

References

  • Li, J.; Guo, H.; Li, Z.-Y. Microscopic and Macroscopic Manipulation of Gold Nanorod and Its Hybrid Nanostructures [Invited]. Photon. Res. 2013, 1, 28–41. DOI: 10.1364/PRJ.1.000028.
  • Qiao, Y.; Song, L.; Li, Y. Complexation of Bovine Serum Albumin and Gold Nanorods Revealed by Plasmon-Enhanced Light Scattering Spectroscopy. Spectrosc. Lett. 2016, 49, 582–587. DOI: 10.1080/00387010.2016.1230876.
  • Poling-Skutvik, R.; Lee, J.; Narayanan, S.; Krishnamoorti, R.; Conrad, J. C. Tunable Assembly of Gold Nanorods in Polymer Solutions to Generate Controlled Nanostructured Materials. ACS Appl. Nano Mater. 2018, 1, 877–885. DOI: 10.1021/acsanm.7b00277.
  • Sambou, A.; Tall, P. D.; Talla, K.; Ngom, O. S. B. D.; Beye, A. C. Control of the Surface Plasmon Resonance of Two Configurations of Nanoparticles: Simple Gold Nanorod and Gold/Silica Core/Shell. Nanosci. Nanotechnol. Res. 2017, 4, 1–6.
  • Chen, S.; Chen, L.; Hu, H.; Liu, Q.; Xu, Y.; Ji, F.; Bao, F.; Fan, J.; Zhang, Q. High-Yield Colloidal Synthesis of Monometallic Au Nanorod–Au Nanoparticle Dimers and Their Application in SERS. RSC Adv. 2017, 7, 12322–12328. DOI: 10.1039/C7RA01039G.
  • Andres-Arroyo, A.; Kemp, S.; Toe, W. J.; Wang, F.; Coleman, V.; Reece, P. J. Characterisation of Au Nanorod Dynamics in Optical Tweezers via Localised Surface Plasmon Resonance Spectroscopy. OTOM., 2014, 9164, 91641I. 5. DOI: 10.1117/12.2062465.
  • Hormozi-Nezhad, M. R.; Robatjazi, H.; Jalali-Heravi, M. Thorough Tuning of the Aspect Ratio of Gold Nanorods Using Response Surface Methodology. Anal. Chim. Acta 2013, 779, 14–21. DOI: 10.1016/j.aca.2013.03.056.
  • Thajudeen, T.; Walter, J.; Srikantharajah, R.; Lübbert, C.; Peukert, W. Determination of the Length and Diameter of Nanorods by a Combination of Analytical Ultracentrifugation and Scanning Mobility Particle Sizer. Nanoscale Horiz. 2017, 2, 253–260. DOI: 10.1039/c7nh00050b.
  • Glidden, M.; Muschol, M. Characterizing Gold Nanorods in Solution Using Depolarized Dynamic Light Scattering. J. Phys. Chem. C 2012, 116, 8128–8137. DOI: 10.1021/jp211533d.
  • Liu, H.; Pierre-Pierre, N.; Huo, Q. Dynamic Light Scattering for Gold Nanorod Size Characterization and Study of Nanorod–Protein Interactions. Gold Bull. 2012, 45, 187–195. DOI: 10.1007/s13404-012-0067-4.
  • Rodríguez-Fernández, J.; Pérez − Juste, J.; Liz − Marzán, L. M.; Lang, P. R. Dynamic Light Scattering of Short Au Rods with Low Aspect Ratios. J. Phys. Chem. C 2007, 111, 5020–5025. DOI: 10.1021/jp067049x.
  • Lin, J.-M.; Huang, Y.-Q.; Liu, Z-b.; Lin, C.-Q.; Ma, X.; Liu, J.-M. Design of an Ultra-Sensitive Gold Nanorod Colorimetric Sensor and Its Application Based on Formaldehyde Reducing Ag. RSC Adv. 2015, 5, 99944–99950. DOI: 10.1039/C5RA16266A.
  • Fedlheim, D. L.; Foss, C. A. Metal Nanoparticles: Synthesis, Characterization, and Applications. CRC Press, 2001.
  • Cortie, M.; Stokes, N.; McDonagh, A. Plasmon Resonance and Electric Field Amplification of Crossed Gold Nanorods. Photon. Nanostruct. Fundam. Appl. 2009, 7, 143–152. DOI: 10.1016/j.photonics.2009.06.002.
  • Li, L.; Liang, Y.; Xie, L.; Lu, M.; Peng, W. Optical Fiber Surface Plasmon Resonance Sensor with Surface Modified Gold Nanorods for Biochemical Detection. Nanophotonics and Micro/Nano Optics II, 2014, 9277, 92771K. DOI: 10.1117/12.2071516.
  • Shen, L.; Hagen, J. A.; Papautsky, I. Point-of-Care Colorimetric Detection with a Smartphone. Lab Chip. 2012, 12, 4240–4243. DOI: 10.1039/c2lc40741h.
  • Quesada-González, D.; Merkoçi, A. Mobile Phone-Based Biosensing: An Emerging "Diagnostic and Communication" “Technology”. Biosens. Bioelectron. 2017, 92, 549–562. DOI: 10.1016/j.bios.2016.10.062.
  • Mathaweesansurn, A.; Maneerat, N.; Choengchan, N. A Mobile Phone-Based Analyzer for Quantitative Determination of Urinary Albumin Using Self-Calibration Approach. Sens. Actuators B 2017, 242, 476–483. DOI: 10.1016/j.snb.2016.11.057.
  • Archibong, E.; Konnaiyan, K. R.; Kaplan, H.; Pyayt, A. A Mobile Phone-Based Approach to Detection of Hemolysis. Biosens. Bioelectron. 2017, 88, 204–209. DOI: 10.1016/j.bios.2016.08.030.
  • Chen, Y.; Fu, G.; Zilberman, Y.; Ruan, W.; Ameri, S. K.; Zhang, Y. S.; Miller, E.; Sonkusale, S. R. Low Cost Smart Phone Diagnostics for Food Using Paper-Based Colorimetric Sensor Arrays. Food Control 2017, 82, 227–232. DOI: 10.1016/j.foodcont.2017.07.003.
  • Moonrungsee, N.; Pencharee, S.; Jakmunee, J. Colorimetric Analyzer Based on Mobile Phone Camera for Determination of Available Phosphorus in Soil. Talanta 2015, 136, 204–209. DOI: 10.1016/j.talanta.2015.01.024.
  • Damirchi, S.; Heidari, T. Evaluation of Digital Camera as a Portable Colorimetric Sensor for Low-Cost Determination of Inorganic Arsenic (III) in Industrial Wastewaters by Chemical Hydride Generation assisted-Fe(III)−1, 10-Phenanthroline as a Green Color Agent. J. Iran. Chem. Soc. 2018, 15, 2549–2557. DOI: 10.1007/s13738-018-1443-7.
  • Damirchi, S.; Maliheh, A.-K. K.; Heidari, T.; Es'haghi, Z.; Chamsaz, M. A Comparison between Digital Camera and Spectrophotometer for Sensitive and Selective Kinetic Determination of Brilliant Green in Wastewaters. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019, 206, 232–239. DOI: 10.1016/j.saa.2018.08.011.
  • Orendorff, C. J.; Murphy, C. J. Quantitation of Metal Content in the Silver-Assisted Growth of Gold Nanorods. J. Phys. Chem. B 2006, 110, 3990–3994. DOI: 10.1021/jp0570972.
  • Jiang, X. C.; Pileni, M. P. Gold Nanorods: Influence of Various Parameters as Seeds, Solvent, Surfactant on Shape Control. Colloids Surf. A 2007, 295, 228–232. DOI: 10.1016/j.colsurfa.2006.09.003.
  • Gao, J.; Bender, C. M.; Murphy, C. J. Dependence of the Gold Nanorod Aspect Ratio on the Nature of the Directing Surfactant in Aqueous Solution. Langmuir 2003, 19, 9065–9070. DOI: 10.1021/la034919i.
  • Sau, T. K.; Murphy, C. J. Seeded High Yield Synthesis of Short Au Nanorods in Aqueous Solution. Langmuir 2004, 20, 6414–6420. DOI: 10.1021/la049463z.
  • Nikoobakht, B.; El-Sayed, M. A. Preparation and Growth Mechanism of Gold Nanorods (NRs) Using Seed-Mediated Growth Method. Chem. Mater. 2003, 15, 1957–1962. DOI: 10.1021/cm020732l.
  • Gorbunova, M. V.; Apyari, V. V.; Dmitrienko, S. G.; Garshev, A. V. Formation of Core-Shell Au@Ag Nanorods Induced by Catecholamines: A Comparative Study and an Analytical Application. Anal. Chim. Acta 2016, 936, 185–194. DOI: 10.1016/j.aca.2016.07.038.
  • Li, M.; Qian, L.; Han, C. Seedless Synthesis of Gold Nanorods with Longitudinal Surface Plasmon Resonance Wavelength of 1200 nm. Spectrosc. Lett. 2017, 50, 585–590. DOI: 10.1080/00387010.2017.1397030.
  • Li, M.; Zhou, R.; Liu, X.; Tao, Q. Seedless Synthesis of Gold Nanorods by Using Hydrogen Peroxide as a Weak Reducing Agent. Spectrosc. Lett. 2019, 52, 239–245. DOI: 10.1080/00387010.2017.1347948.
  • Meng, L.; Zhang, J.; Li, H.; Zhao, W.; Zhao, T. Preparation and Progress in Application of Gold Nanorods. J. Nanomater. 2019, 2019, 1–11. DOI: 10.1155/2019/4925702.
  • Pattanayak, S.; Jana, S. K. Controllable Aqueous Synthesis of near-IR-Plasmonic Anisotropic Gold Nanoparticles in the Hydrazine Concentration Assisted: Hydrazine-Citrate Hydrogen-Bonded Network at Room Temperature and Application in Highly Sensitive SERS-Based Detection of Pb (II) Species. Inorg. Nano-Metal Chem. 2018, 48, 535–540. DOI: 10.1080/24701556.2019.1567543.
  • Yoon, S.; Lee, B.; Yun, J.; Han, J. G.; Lee, J.-S.; Lee, J. H. Systematic Study of Interdependent Relationship on Gold Nanorod Synthesis Assisted by Electron Microscopy Image Analysis. Nanoscale 2017, 9, 7114–7123. DOI: 10.1039/c7nr01462g.
  • Ahmed, W.; Bhatti, A. S.; van Ruitenbeek, J. M. Efficient Seed-Mediated Method for the Large-Scale Synthesis of Au Nanorods. J. Nanopart. Res. 2017, 19, 115. DOI: 10.1007/s11051-017-3815-9.
  • Liu, X.; Yao, J.; Luo, J.; Duan, X.; Yao, Y.; Liu, T. Effect of Growth Temperature on Tailoring the Size and Aspect Ratio of Gold Nanorods. Langmuir 2017, 33, 7479–7485. DOI: 10.1021/acs.langmuir.7b01635.
  • Noguez, C. Surface Plasmons on Metal Nanoparticles: The Influence of Shape and Physical Environment. J. Phys. Chem. C 2007, 111, 3806–3819. DOI: 10.1021/jp066539m.
  • Link, S.; El-Sayed, M. A. Shape and Size Dependence of Radiative, Non-Radiative and Photothermal Properties of Gold Nanocrystals. Int. Rev. Phys. Chem. 2000, 19, 409–453. DOI: 10.1080/01442350050034180.
  • Jain, P. K.; Lee, K. S.; El-Sayed, I. H.; El-Sayed, M. A. Calculated Absorption and Scattering Properties of Gold Nanoparticles of Different Size, Shape, and Composition: Applications in Biological Imaging and Biomedicine. J. Phys. Chem. B 2006, 110, 7238–7248. DOI: 10.1021/jp057170o.
  • Pérez-Juste, J.; Pastoriza-Santos, I.; Liz-Marzán, L. M.; Mulvaney, P. Gold Nanorods: Synthesis, Characterization and Applications. Coord. Chem. Rev. 2005, 249, 1870–1901. DOI: 10.1016/j.ccr.2005.01.030.
  • Scarabelli, L.; Sánchez-Iglesias, A.; Pérez-Juste, J.; Liz-Marzán, L. M. A “Tips and Tricks” Practical Guide to the Synthesis of Gold Nanorods. J. Phys. Chem. Lett. 2015, 6, 4270–4279. DOI: 10.1021/acs.jpclett.5b02123.
  • Shi, W.; Casas, J.; Venkataramasubramani, M.; Tang, L. Synthesis and Characterization of Gold Nanoparticles with Plasmon Absorbance Wavelength Tunable from Visible to near Infrared Region. ISRN Nanomater. 2012, 2012, 1–9. DOI: 10.5402/2012/659043.
  • Chandra, S.; Doran, J.; McCormack, S. J. Two Step Continuous Method to Synthesize Colloidal Spheroid Gold Nanorods. J. Colloid Interface Sci. 2015, 459, 218–223. DOI: 10.1016/j.jcis.2015.08.019.
  • Ostad, M. A.; Hajinia, A.; Heidari, T. A Novel Direct and Cost Effective Method for Fabricating Paper-Based Microfluidic Device by Commercial Eye Pencil and Its Application for Determining Simultaneous Calcium and Magnesium. Microchem. J. 2017, 133, 545–550. DOI: 10.1016/j.microc.2017.04.031.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.