1,122
Views
14
CrossRef citations to date
0
Altmetric
Articles

Microwave-irradiated green synthesis of metallic silver and copper nanoparticles using fresh ginger (Zingiber officinale) rhizome extract and evaluation of their antibacterial potentials and cytotoxicity

ORCID Icon, ORCID Icon, ORCID Icon &
Pages 722-732 | Received 07 Apr 2020, Accepted 12 Jul 2020, Published online: 20 Aug 2020

References

  • Nasrollahzadeh, M.; Sajadi, S. M. Green Synthesis of Copper Nanoparticles Using Ginkgo biloba L. Leaf Extract and Their Catalytic Activity for the Huisgen [3 + 2] Cycloaddition of Azides and Alkynes at Room Temperature. J. Colloid Interface Sci. 2015, 457, 141–147. DOI: 10.1016/j.jcis.2015.07.004.
  • Huang, X.; El-Sayed, M. A. Gold Nanoparticles: Optical Properties and Implementations in Cancer Diagnosis and Photothermal Therapy. J. Adv. Res. 2010, 1, 13–28. DOI: 10.1016/j.jare.2010.02.002.
  • Pantidos, N.; Horsfall, L. E. Biological Synthesis of Metallic Nanoparticles by Bacteria, Fungi and Plants. J. Nanomed. Nanotechnol. 2014, 05, 1. DOI: 10.4172/2157-7439.1000233.
  • Stoimenov, P. K.; Klinger, R. L.; Marchin, G. L.; Klabunde, K. J. Metal Oxide Nanoparticles as Bactericidal Agents. Langmuir 2002, 18, 6679–6686. DOI: 10.1021/la0202374.
  • Baker, S.; Rakshith, D.; Kavitha, K. S.; Santosh, P.; Kavitha, H. U.; Rao, Y.; Satish, S. Plants: Emerging as Nanofactories Towards Facile Route in Synthesis of Nanoparticles. BioImpacts 2013, 3, 111.
  • Iravani, S. Green Synthesis of Metal Nanoparticles Using Plants. Green Chem. 2011, 13, 2638–2650. DOI: 10.1039/c1gc15386b.
  • Parashar, U. K.; Saxena, P. S.; Srivastava, A. Bioinspired Synthesis of Silver Nanoparticles. Dig. J. Nanomater. Biostruct. 2009, 4, 159– 166.
  • Rasool, U.; Hemalatha, S. Marine Endophytic Actinomycetes Assisted Synthesis of Copper Nanoparticles (CuNPs): Characterization and Antibacterial Efficacy against Human Pathogens. Mater. Lett. 2017, 194, 176–180. DOI: 10.1016/j.matlet.2017.02.055.
  • Hassan, S. E.-D.; Salem, S. S.; Fouda, A.; Awad, M. A.; El-Gamal, M. S.; Abdo, A. M. New Approach for Antimicrobial Activity and Bio-Control of Various Pathogens by Biosynthesized Copper Nanoparticles Using Endophytic Actinomycetes. J. Radiat. Res. Appl. Sci. 2018, 11, 262–270. DOI: 10.1016/j.jrras.2018.05.003.
  • Saravanan, M.; Barik, S. K.; MubarakAli, D.; Prakash, P.; Pugazhendhi, A. Synthesis of Silver Nanoparticles from Bacillus brevis (NCIM 2533) and Their Antibacterial Activity against Pathogenic Bacteria. Microb. Pathog. 2018, 116, 221–226. DOI: 10.1016/j.micpath.2018.01.038.
  • Klaus-Joerger, T.; Joerger, R.; Olsson, E.; Granqvist, C.-G. Bacteria as Workers in the Living Factory: metal-Accumulating Bacteria and Their Potential for Materials Science. Trends Biotechnol. 2001, 19, 15–20. DOI: 10.1016/S0167-7799(00)01514-6.
  • Zhao, X.; Zhou, L.; Riaz Rajoka, M. S.; Yan, L.; Jiang, C.; Shao, D.; Zhu, J.; Shi, J.; Huang, Q.; Yang, H.; Jin, M. Fungal Silver Nanoparticles: Synthesis, Application and Challenges. Crit. Rev. Biotechnol. 2018, 38, 817–835. DOI: 10.1080/07388551.2017.1414141.
  • Molnár, Z.; Bódai, V.; Szakacs, G.; Erdélyi, B.; Fogarassy, Z.; Sáfrán, G.; Varga, T.; Kónya, Z.; Tóth-Szeles, E.; Szűcs, R.; Lagzi, I. Green Synthesis of Gold Nanoparticles by Thermophilic Filamentous Fungi. Sci. Rep. 2018, 8, 1–12. DOI: 10.1038/s41598-018-22112-3.
  • Erci, F.; Cakir-Koc, R.; Yontem, M.; Torlak, E. Synthesis of Biologically Active Copper Oxide Nanoparticles as Promising Novel Antibacterial-Antibiofilm Agents. Prep. Biochem. Biotechnol. 2020, 50, 538–511. DOI: 10.1080/10826068.2019.1711393.
  • Jahan, I.; Erci, F.; Isildak, I. Microwave-Assisted Green Synthesis of Non-Cytotoxic Silver Nanoparticles Using the Aqueous Extract of Rosa santana (Rose) Petals and Their Antimicrobial Activity. Anal. Lett. 2019, 52, 1860–1873. DOI: 10.1080/00032719.2019.1572179.
  • Ali, J. S.; Mannan, A.; Nasrullah, M.; Ishtiaq, H.; Naz, S.; Zia, M. Antimicrobial, Antioxidative, and Cytotoxic Properties of Monotheca buxifolia Assisted Synthesized Metal and Metal Oxide Nanoparticles. Inorg. Nano-Met Chem. 2020, 50, 770–713. DOI: 10.1080/24701556.2020.1724150.
  • Gour, A.; Jain, N. K. Advances in Green Synthesis of Nanoparticles. Artif. Cells. Nanomed. Biotechnol. 2019, 47, 844–851. DOI: 10.1080/21691401.2019.1577878.
  • Mondal, N. K.; Chowdhury, A.; Dey, U.; Mukhopadhya, P.; Chatterjee, S.; Das, K.; Datta, J. K. Green Synthesis of Silver Nanoparticles and Its Application for Mosquito Control. Asian Pac. J. Trop. Dis. 2014, 4, S204–S210. DOI: 10.1016/S2222-1808(14)60440-0.
  • Huang, J.; Li, Q.; Sun, D.; Lu, Y.; Su, Y.; Yang, X.; Wang, H.; Wang, Y.; Shao, W.; He, N.; et al. Biosynthesis of Silver and Gold Nanoparticles by Novel Sundried Cinnamomum camphora Leaf. Nanotechnology 2007, 18, 105104–105104. DOI: 10.1088/0957-4484/18/10/105104.
  • Shah, M.; Fawcett, D.; Sharma, S.; Tripathy, S. K.; Poinern, G. E. J. Green Synthesis of Metallic Nanoparticles via Biological Entities. Materials (Basel) 2015, 8, 7278–7308. DOI: 10.3390/ma8115377.
  • Rajathi, F. A. A.; Parthiban, C.; Kumar, V. G.; Anantharaman, P. Biosynthesis of Antibacterial Gold Nanoparticles Using Brown Alga, Stoechospermum marginatum (Kützing). Spectrochim. Acta A Mol. Biomol. Spectrosc. 2012, 99, 166–173. DOI: 10.1016/j.saa.2012.08.081.
  • Tsuji, M.; Hashimoto, M.; Nishizawa, Y.; Kubokawa, M.; Tsuji, T. Microwave-Assisted Synthesis of Metallic Nanostructures in Solution. Chemistry 2005, 11, 440–452. DOI: 10.1002/chem.200400417.
  • Jiang, H.; Moon, K-s.; Zhang, Z.; Pothukuchi, S.; Wong, C. Variable Frequency Microwave Synthesis of Silver Nanoparticles. J. Nanopart. Res. 2006, 8, 117–124. DOI: 10.1007/s11051-005-7522-6.
  • Kahrilas, G. A.; Wally, L. M.; Fredrick, S. J.; Hiskey, M.; Prieto, A. L.; Owens, J. E. Microwave-Assisted Green Synthesis of Silver Nanoparticles Using Orange Peel Extract. ACS Sustain. Chem. Eng. 2014, 2, 367–376. DOI: 10.1021/sc4003664.
  • Kudle, K. R.; Donda, M. R.; Merugu, R.; Kudle, M. R.; Rudra, M. P. P. Microwave Assisted Green Synthesis of Silver Nanoparticles Using Boswellia serrata Flower Extract and Evaluation of Their Antimicrobial Activity. Int. Res. J. Pharm. 2013, 4, 197–200. DOI: 10.7897/2230-8407.04644.
  • Royal Botanic Gardens, K. Zingiber officinale. http://powo.science.kew.org/taxon/urn:lsid:ipni.org:names: 798372–1.
  • Prasad, S.; Tyagi, A. K. Ginger and Its Constituents: Role in Prevention and Treatment of Gastrointestinal Cancer. Gastroenterol. Res. Pract. 2015, 2015, 142979. DOI: 10.1155/2015/142979.
  • Zhang, H.-X.; Siegert, U.; Liu, R.; Cai, W.-B. Facile Fabrication of Ultrafine Copper Nanoparticles in Organic Solvent. Nanoscale Res. Lett. 2009, 4, 705–708. DOI: 10.1007/s11671-009-9301-2.
  • Cheng, X.; Zhang, X.; Yin, H.; Wang, A.; Xu, Y. Modifier Effects on Chemical Reduction Synthesis of Nanostructured Copper. Appl. Surf. Sci. 2006, 253, 2727–2732. DOI: 10.1016/j.apsusc.2006.05.125.
  • Umer, A.; Naveed, S.; Ramzan, N.; Rafique, M. S.; Imran, M. A Green Method for the Synthesis of Copper Nanoparticles Using L-Ascorbic Acid. Matéria (Rio J.) 2014, 19, 197–−203. DOI: 10.1590/S1517-70762014000300002.
  • Suresh, Y.; Annapurna, S.; Bhikshamaiah, G.; Singh, A. K. Copper Nanoparticles: Green Synthesis and Characterization. Int. J. Sci. Eng. Res. 2014, 5, 156–160.
  • Zaheer, Z. Silver Nanoparticles to Self-Assembled Films: Green Synthesis and Characterization. Colloids Surf. B Biointerfaces 2012, 90, 48–52. DOI: 10.1016/j.colsurfb.2011.09.037.
  • Dang, T. M. D.; Le, T. T. T.; Fribourg-Blanc, E.; Dang, M. C. Synthesis and Optical Properties of Copper Nanoparticles Prepared by a Chemical Reduction Method. Adv. Nat. Sci. Nanosci. Nanotechnol. 2011, 2, 015009. DOI: 10.1088/2043-6262/2/1/015009.
  • Hamedi, S.; Shojaosadati, S. A.; Mohammadi, A. Evaluation of the Catalytic, Antibacterial and Anti-biofilm Activities of the Convolvulus arvensis Extract Functionalized Silver Nanoparticles. J. Photochem. Photobiol. B Biol. 2017, 167, 36–44. DOI: 10.1016/j.jphotobiol.2016.12.025.
  • Otte, H. M. Lattice Parameter Determinations with an X‐ray Spectrogoniometer by the Debye‐Scherrer Method and the Effect of Specimen Condition. J. Appl. Phys. 1961, 32, 1536–1546. DOI: 10.1063/1.1728392.
  • Mellinas, C.; Jiménez, A.; Garrigós, M. D. C. Microwave-Assisted Green Synthesis and Antioxidant Activity of Selenium Nanoparticles Using Theobroma cacao L. Bean Shell Extract. Molecules 2019, 24, 4048. DOI: 10.3390/molecules24224048.
  • Cai, Y.; Piao, X.; Gao, W.; Zhang, Z.; Nie, E.; Sun, Z. Large-Scale and Facile Synthesis of Silver Nanoparticles via a Microwave Method for a Conductive Pen. RSC Adv. 2017, 7, 34041–34048. DOI: 10.1039/C7RA05125E.
  • Ali, K.; Ahmed, B.; Dwivedi, S.; Saquib, Q.; Al-Khedhairy, A. A.; Musarrat, J. Microwave Accelerated Green Synthesis of Stable Silver Nanoparticles with Eucalyptus globulus Leaf Extract and Their Antibacterial and Antibiofilm Activity on Clinical Isolates. PloS One. 2015, 10, e0131178DOI: 10.1371/journal.pone.0131178.
  • Kaviya, S.; Santhanalakshmi, J.; Viswanathan, B.; Muthumary, J.; Srinivasan, K. Biosynthesis of Silver Nanoparticles Using Citrus sinensis Peel Extract and Its Antibacterial Activity. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2011, 79, 594–598. DOI: 10.1016/j.saa.2011.03.040.
  • Erci, F.; Cakir-Koc, R.; Isildak, I. Green Synthesis of Silver Nanoparticles Using Thymbra spicata L. var. spicata (Zahter) Aqueous Leaf Extract and Evaluation of Their Morphology-Dependent Antibacterial and Cytotoxic Activity. Artif. Cells Nanomed. Biotechnol. 2018, 46, 150–158. DOI: 10.1080/21691401.2017.1415917.
  • Matsumura, Y.; Yoshikata, K.; Kunisaki, S-i.; Tsuchido, T. Mode of Bactericidal Action of Silver Zeolite and Its Comparison with That of Silver Nitrate. Appl. Environ. Microbiol. 2003, 69, 4278–4281. DOI: 10.1128/aem.69.7.4278-4281.2003.
  • Jung, W. K.; Koo, H. C.; Kim, K. W.; Shin, S.; Kim, S. H.; Park, Y. H. Antibacterial Activity and Mechanism of Action of the Silver Ion in Staphylococcus aureus and Escherichia coli. Appl. Environ. Microbiol. 2008, 74, 2171–2178. DOI: 10.1128/AEM.02001-07.
  • Feng, Q. L.; Wu, J.; Chen, G.; Cui, F.; Kim, T.; Kim, J. A Mechanistic Study of the Antibacterial Effect of Silver Ions on Escherichia coli and Staphylococcus aureus. J. Biomed. Mater. Res. 2000, 52, 662–668. DOI: 10.1002/1097-4636(20001215)52:4<662::AID-JBM10>3.0.CO;2-3.
  • Yang, N.; Li, F.; Jian, T.; Liu, C.; Sun, H.; Wang, L.; Xu, H. Biogenic Synthesis of Silver Nanoparticles Using Ginger (Zingiber officinale) Extract and Their Antibacterial Properties against Aquatic Pathogens. Acta Oceanol. Sin. 2017, 36, 95–100. DOI: 10.1007/s13131-017-1099-7.
  • Oli, H. B.; Sharma, N.; Ekaraj, K. C.; Subedee, A.; Timilsina, R. Green Synthesis of Copper Nanoparticles Using Zingiber officinale Extract and Characterization. J. Nepal Chem. Soc. 2018, 39, 10–17. DOI: 10.3126/jncs.v39i0.27008.
  • Thounaojam, M. C.; Jadeja, R. N.; Valodkar, M.; Nagar, P. S.; Devkar, R. V.; Thakore, S. Oxidative Stress Induced Apoptosis of Human Lung Carcinoma (A549) Cells by a Novel Copper Nanorod Formulation. Food Chem. Toxicol. 2011, 49, 2990–2996. DOI: 10.1016/j.fct.2011.07.055.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.