212
Views
15
CrossRef citations to date
0
Altmetric
Articles

The green-synthesized zinc oxide nanoparticle as a novel natural apoptosis inducer in human breast (MCF7 and MDA-MB231) and colon (HT-29) cancer cells

, , &
Pages 733-743 | Received 09 Apr 2020, Accepted 12 Jul 2020, Published online: 24 Aug 2020

References

  • Narendhirakannan, R.; Hannah, M. A. C. Oxidative Stress and Skin Cancer: An Overview. Indian J. Clin. Biochem. 2013, 28, 110–115. DOI: 10.1007/s12291-012-0278-8.
  • Strzelczyk, J. K.; Wiczkowski, A. Oxidative Damage and Carcinogenesis. Contemp. Oncol. (Pozn) 2012, 16, 230–233. DOI: 10.5114/wo.2012.29290.
  • Fernald, K.; Kurokawa, M. Evading Apoptosis in Cancer. Trends Cell Biol. 2013, 23, 620–633. DOI: 10.1016/j.tcb.2013.07.006.
  • Yadav, N.; Kumar, S.; Marlowe, T.; Chaudhary, A. K.; Kumar, R.; Wang, J.; O'Malley, J.; Boland, P. M.; Jayanthi, S.; Kumar, T. K. S.; et al. Oxidative Phosphorylation-Dependent Regulation of Cancer Cell Apoptosis in Response to Anticancer Agents. Cell Death Dis. 2015, 6, e1969DOI: 10.1038/cddis.2015.305.
  • Sulaiman, G. M.; Mohammed, W. H.; Marzoog, T. R.; Al-Amiery, A. A. A.; Kadhum, A. A. H.; Mohamad, A. B. Green Synthesis, Antimicrobial and Cytotoxic Effects of Silver Nanoparticles Using Eucalyptus Chapmaniana Leaves Extract. Asian Pac. J. Trop. Biomed. 2013, 3, 58–63. DOI: 10.1016/S2221-1691(13)60024-6.
  • Karin, M.; Lin, A. NF-kappaB at the Crossroads of Life and Death. Nat. Immunol. 2002, 3, 221–227. DOI: 10.1038/ni0302-221.
  • Foyer, C. H.; Wilson, M. H.; Wright, M. H. Redox Regulation of Cell Proliferation: bioinformatics and Redox Proteomics Approaches to Identify Redox-Sensitive Cell Cycle Regulators. Free Radic. Biol. Med. 2018, 122, 137–149. DOI: 10.1016/j.freeradbiomed.2018.03.047.
  • Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R. L.; Torre, L. A.; Jemal, A. Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2018, 68, 394–424. DOI: 10.3322/caac.21492.
  • Khatri, S.; Lohani, P.; Gandhi, S. Nanoemulsions in cancer therapy. Indo Global Journal of Pharmaceutical Sciences, 2013, 124-133.
  • Shi, H.; Magaye, R.; Castranova, V.; Zhao, J. Titanium Dioxide Nanoparticles: A Review of Current Toxicological Data. Part Fibre Toxicol. 2013, 10, 15. DOI: 10.1186/1743-8977-10-15.
  • Buzea, C.; Pacheco, I. I.; Robbie, K. Nanomaterials and Nanoparticles: Sources and Toxicity. Biointerphases 2007, 2, MR17–MR71. DOI: 10.1116/1.2815690.
  • Rasmussen, J. W.; Martinez, E.; Louka, P.; Wingett, D. G. Zinc Oxide Nanoparticles for Selective Destruction of Tumor Cells and Potential for Drug Delivery Applications. Expert Opin. Drug Deliv. 2010, 7, 1063–1077. DOI: 10.1517/17425247.2010.502560.
  • Bahrami, B.; Hojjat-Farsangi, M.; Mohammadi, H.; Anvari, E.; Ghalamfarsa, G.; Yousefi, M.; Jadidi-Niaragh, F. Nanoparticles and Targeted Drug Delivery in Cancer Therapy. Immunol. Lett. 2017, 190, 64–83. DOI: 10.1016/j.imlet.2017.07.015.
  • Ashe, B., A Detail Investigation to Observe the Effect of Zinc Oxide and Silver Nanoparticles in Biological System (Doctoral dissertation), Department of Biotechnology & Medical Engineering National Institute Of Technology Rourkela, Orissa, India, January, 2011.
  • Rao, M. D.; Gautam, P. Synthesis and Characterization of ZnO Nanoflowers Using C Hlamydomonas Reinhardtii: A Green Approach. Environ. Prog. Sustain. Energy 2016, 35, 1020–1026. DOI: 10.1002/ep.12315.
  • Afifi, M.; Almaghrabi, O. A.; Kadasa, N. M. Ameliorative Effect of Zinc Oxide Nanoparticles on Antioxidants and Sperm Characteristics in Streptozotocin-Induced Diabetic Rat Testes. Biomed. Res. Int. 2015, 2015, 153573. DOI: 10.1155/2015/153573.
  • Chen, J.; Liu, X.; Wang, C.; Yin, S.-S.; Li, X.-L.; Hu, W.-J.; Simon, M.; Shen, Z.-J.; Xiao, Q.; Chu, C.-C.; et al. Nitric Oxide Ameliorates Zinc Oxide Nanoparticles-Induced Phytotoxicity in Rice Seedlings. J. Hazard. Mater 2015, 297, 173–182. DOI: 10.1016/j.jhazmat.2015.04.077.
  • Chandrasekaran, R.; Gnanasekar, S.; Seetharaman, P.; Keppanan, R.; Arockiaswamy, W.; Sivaperumal, S. Formulation of Carica Papaya Latex-Functionalized Silver Nanoparticles for Its Improved Antibacterial and Anticancer Applications. J. Mol. Liq. 2016, 219, 232–238. DOI: 10.1016/j.molliq.2016.03.038.
  • Dhandapani, P.; Siddarth, A. S.; Kamalasekaran, S.; Maruthamuthu, S.; Rajagopal, G. Bio-Approach: ureolytic Bacteria Mediated Synthesis of ZnO Nanocrystals on Cotton Fabric and Evaluation of Their Antibacterial Properties. Carbohydr. Polym. 2014, 103, 448–455. DOI: 10.1016/j.carbpol.2013.12.074.
  • Isık, T.; Hilal, M. E.; Horzum, N. Green Synthesis of Zinc Oxide Nanostructures. In Zinc Oxide Based Nano Materials and Devices. IntechOpen: London, 2019.
  • Yuvakkumar, R.; Suresh, J.; Nathanael, A. J.; Sundrarajan, M.; Hong, S. I. Novel Green Synthetic Strategy to Prepare ZnO Nanocrystals Using Rambutan (Nephelium lappaceum L.) Peel Extract and Its Antibacterial Applications. Mater. Sci. Eng. C Mater. Biol. Appl. 2014, 41, 17–27. DOI: 10.1016/j.msec.2014.04.025.
  • Chokkareddy, R.; Redhi, G. G. Green Synthesis of Metal Nanoparticles and Its Reaction Mechanisms. In Green Metal Nanoparticles: Synthesis, Characterization and Their Applications, Wiley: New York, 2018; pp. 113–139.
  • Mishra, V.; Sharma, R. Green Synthesis of Zinc Oxide Nanoparticles Using Fresh Peels Extract of Punica Granatum and Its Antimicrobial Activities. Int. J. Pharma Res. Health Sci. 2015, 3, 694–699.
  • Dehpour, A. A.; Ebrahimzadeh, M. A.; Seyed Fazel, N.; Seyed Mohammad, N. Antioxidant Activity of the Methanol Extract of Ferula Assafoetida and Its Essential Oil Composition. Grasas Aceites 2009, 60, 405–412. DOI: 10.3989/gya.010109.
  • Malhotra, S. P. K.; Mandal, T. Biomedical Applications of Zinc Oxide Nanomaterials in Cancer Treatment: A Review. 2016. SCIREA Journal of Chemistry, 2016, 68-79
  • Baek, M.; Kim, M. K.; Cho, H. J.; Lee, J. A.; Yu, J.; Chung, H. E.; Choi, S. J. Factors Influencing the Cytotoxicity of Zinc Oxide Nanoparticles: Particle Size and Surface Charge. J. Phys.: Conf. Ser. 2011, 304, 012044. DOI: 10.1088/1742-6596/304/1/012044.
  • Ahamed, M.; Akhtar, M. J.; Raja, M.; Ahmad, I.; Siddiqui, M. K. J.; AlSalhi, M. S.; Alrokayan, S. A. ZnO Nanorod-Induced Apoptosis in Human Alveolar Adenocarcinoma Cells via p53, Survivin and Bax/Bcl-2 Pathways: Role of Oxidative Stress. Nanomed. Nanotechnol. Biol. Med. 2011, 7, 904–913. DOI: 10.1016/j.nano.2011.04.011.
  • Guan, R.; Kang, T.; Lu, F.; Zhang, Z.; Shen, H.; Liu, M. Cytotoxicity, Oxidative Stress, and Genotoxicity in Human Hepatocyte and Embryonic Kidney Cells Exposed to ZnO Nanoparticles. Nanoscale Res. Lett. 2012, 7, 602. DOI: 10.1186/1556-276X-7-602.
  • Selvakumari, D., et al., Anti cancer Activity of ZnO Nanoparticles on MCF7 (Breast Cancer Cell) and A549 (Lung Cancer Cell). Asian Research Publishing Network Journal of Engineering and Applied Sciences 2015, 10, p. 5418–5421.
  • Wang, J.; Lee, J. S.; Kim, D.; Zhu, L. Exploration of Zinc Oxide Nanoparticles as a Multitarget and Multifunctional Anticancer Nanomedicine. ACS Appl. Mater. Interfaces 2017, 9, 39971–39984. DOI: 10.1021/acsami.7b11219.
  • Bai, D.-P.; Zhang, X.-F.; Zhang, G.-L.; Huang, Y.-F.; Gurunathan, S. Zinc Oxide Nanoparticles Induce Apoptosis and Autophagy in Human Ovarian Cancer Cells. Int. J. Nanomed. 2017, 12, 6521–6535. DOI: 10.2147/IJN.S140071.
  • Derakhshan, M. Apoptosis at a glance: Death or life? Paki J of Medi Scie.2007.979.
  • Saraste, A.; Pulkki, K. Morphologic and Biochemical Hallmarks of Apoptosis. Cardiovasc. Res. 2000, 45, 528–537. DOI: 10.1016/S0008-6363(99)00384-3.
  • Sjöström, J.; Blomqvist, C.; von Boguslawski, K.; Bengtsson, N.-O.; Mjaaland, I.; Malmström, P.; Ostenstadt, B.; Wist, E.; Valvere, V.; Takayama, S.; et al. The Predictive Value of Bcl-2, Bax, Bcl-xL, Bag-1, Fas, and fasL for Chemotherapy Response in Advanced Breast Cancer. Clin. Cancer Res. 2002, 8, 811–816.
  • Kong, C.-Z.; Zhang, Z. Bcl-2 Overexpression Inhibits Generation of Intracellular Reactive Oxygen Species and Blocks Adriamycin-Induced Apoptosis in Bladder Cancer Cells. Asian Pac. J. Cancer Prev. 2013, 14, 895–901. DOI: 10.7314/apjcp.2013.14.2.895.
  • Song, M.; Dominguez, C.; Lowe, E.; Parthasarathy, S.; Murphy, A. A. Antioxidants (Vitamins E and C) Decrease Bcl2/Increase Apoptosis in Eutopic Endometrium of Women with Endometriosis. Fertil. Steril. 2004, 82, S166–S167. DOI: 10.1016/j.fertnstert.2004.07.430.
  • Li, P.; Huo, L.; Su, W.; Lu, R.; Deng, C.; Liu, L.; Deng, Y.; Guo, N.; Lu, C.; He, C.; et al. Free Radical-Scavenging Capacity, Antioxidant Activity and Phenolic Content of Pouzolzia zeylanica. J. Serb. Chem. Soc. 2011, 76, 709–717. DOI: 10.2298/JSC100818063L.
  • Huang, D.; Ou, B.; Prior, R. L. The Chemistry behind Antioxidant Capacity Assays. J. Agric. Food Chem. 2005, 53, 1841–1856. DOI: 10.1021/jf030723c.
  • Campbell, K. J.; Tait, S. W. Targeting BCL-2 Regulated Apoptosis in Cancer. Open Biol. 2018, 8, 180002. DOI: 10.1098/rsob.180002.
  • Santhoshkumar, J.; Kumar, S. V.; Rajeshkumar, S. Synthesis of Zinc Oxide Nanoparticles Using Plant Leaf Extract against Urinary Tract Infection Pathogen. Resour-Effic. Technol. 2017, 3, 459–465. DOI: 10.1016/j.reffit.2017.05.001.
  • Crowley, L. C.; Marfell, B. J.; Waterhouse, N. J. Analyzing Cell Death by Nuclear Staining with Hoechst 33342. Cold Spring Harb. Protoc. 2016, 2016, pdb.prot087205. DOI: 10.1101/pdb.prot087205.
  • Blois, M. S. Antioxidant Determinations by the Use of a Stable Free Radical. Nature 1958, 181, 1199–1200. DOI: 10.1038/1811199a0.
  • Li, L.; Liu, L.; Li, Z.; Hu, D.; Gao, C.; Xiong, J.; Li, W. The Synthesis of CB[8]/ZnO Composites Materials with Enhanced Photocatalytic Activities. Heliyon 2019, 5, e01714DOI: 10.1016/j.heliyon.2019.e01714.
  • Lye, J. C.; Richards, C. D.; Dechen, K.; Paterson, D.; de Jonge, M. D.; Howard, D. L.; Warr, C. G.; Burke, R. Systematic Functional Characterization of Putative Zinc Transport Genes and Identification of Zinc Toxicosis Phenotypes in Drosophila melanogaster. J. Exp. Biol. 2012, 215, 3254–3265. DOI: 10.1242/jeb.069260.
  • Fan, Z.; Lu, J. G. Zinc Oxide Nanostructures: Synthesis and properties. J. Nanosci. Nanotechnol. 2005, 5, 1561–1573. DOI: 10.1166/jnn.2005.182.
  • Chen, W.; Zhang, J. Using Nanoparticles to Enable Simultaneous Radiation and Photodynamic Therapies for Cancer Treatment. J. Nanosci. Nanotechnol. 2006, 6, 1159–1166. DOI: 10.1166/jnn.2006.327.
  • Yang, H.; Liu, C.; Yang, D.; Zhang, H.; Xi, Z. Comparative Study of Cytotoxicity, Oxidative Stress and Genotoxicity Induced by Four Typical Nanomaterials: The Role of Particle Size, Shape and Composition. J. Appl. Toxicol. 2009, 29, 69–78. DOI: 10.1002/jat.1385.
  • Basu, A.; Haldar, S. The Relationship between BcI2, Bax and p53: Consequences for Cell Cycle Progression and Cell Death. Mol. Hum. Reprod. 1998, 4, 1099–1109. DOI: 10.1093/molehr/4.12.1099.
  • Elmore, S. Apoptosis: A Review of Programmed Cell Death. Toxicol. Pathol. 2007, 35, 495–516. DOI: 10.1080/01926230701320337.
  • Poljšak, B.; Fink, R. The Protective Role of Antioxidants in the Defence against ROS/RNS-Mediated Environmental Pollution. Oxid. Med. Cell. Longev. 2014, 2014, 671539. DOI: 10.1155/2014/671539.
  • Liou, G.-Y.; Storz, P. Reactive Oxygen Species in Cancer. Free Radic. Res. 2010, 44, 479–496. DOI: 10.3109/10715761003667554.
  • Han, E.-S.; Muller, F. L.; Pérez, V. I.; Qi, W.; Liang, H.; Xi, L.; Fu, C.; Doyle, E.; Hickey, M.; Cornell, J.; et al. The In Vivo Gene Expression Signature of Oxidative Stress. Physiol. Genom. 2008, 34, 112–126. DOI: 10.1152/physiolgenomics.00239.2007.
  • Miyashita, T.; Reed, J. C. Tumor Suppressor p53 is a Direct Transcriptional Activator of the Human Bax Gene. Cell 1995, 80, 293–300. DOI: 10.1016/0092-8674(95)90412-3.
  • Reisman, D.; Takahashi, P.; Polson, A.; Boggs, K. Transcriptional Regulation of the p53 Tumor Suppressor Gene in S-Phase of the Cell-Cycle and the Cellular Response to DNA Damage. Biochem. Res. Int. 2012, 2012, 808934. DOI: 10.1155/2012/808934.
  • Thomas, A.; El Rouby, S.; Reed, J. C.; Krajewski, S.; Silber, R.; Potmesil, M.; Newcomb, E. W. Drug-Induced Apoptosis in B-Cell Chronic Lymphocytic Leukemia: relationship between p53 Gene Mutation and Bcl-2/Bax Proteins in Drug Resistance. Oncogene 1996, 12, 1055–1062.
  • McCurrach, M. E.; Connor, T. M.; Knudson, C. M.; Korsmeyer, S. J.; Lowe, S. W. Bax-Deficiency Promotes Drug Resistance and Oncogenic Transformation by Attenuating p53-Dependent Apoptosis. Proc. Natl. Acad. Sci. USA 1997, 94, 2345–2349. DOI: 10.1073/pnas.94.6.2345.
  • Yin, C.; Knudson, C. M.; Korsmeyer, S. J.; Van Dyke, T. Bax Suppresses Tumorigenesis and Stimulates Apoptosis In Vivo. Nature 1997, 385, 637–640. DOI: 10.1038/385637a0.
  • Singh, R.; Letai, A.; Sarosiek, K. Regulation of Apoptosis in Health and Disease: The Balancing Act of BCL-2 Family Proteins. Nat. Rev. Mol. Cell Biol. 2019, 20, 175–193. DOI: 10.1038/s41580-018-0089-8.
  • Selvakumari, D.; et al. Anti Cancer Activity of ZnO Nanoparticles on MCF7 (Breast Cancer Cell) and A549 (Lung Cancer Cell). ARPN J. Eng. Appl. Sci. 2015, 10, 5418–5421.
  • Bai Aswathanarayan, J.; Rai Vittal, R.; Muddegowda, U. Anticancer Activity of Metal Nanoparticles and Their Peptide Conjugates against Human Colon Adenorectal Carcinoma Cells. Artif. Cells. Nanomed. Biotechnol. 2018, 46, 1444–1451. DOI: 10.1080/21691401.2017.1373655.
  • Song, W.; Zhang, J.; Guo, J.; Zhang, J.; Ding, F.; Li, L.; Sun, Z. Role of the Dissolved Zinc Ion and Reactive Oxygen Species in Cytotoxicity of ZnO Nanoparticles. Toxicol. Lett. 2010, 199, 389–397. DOI: 10.1016/j.toxlet.2010.10.003.
  • Xia, T.; Kovochich, M.; Liong, M.; Mädler, L.; Gilbert, B.; Shi, H.; Yeh, J. I.; Zink, J. I.; Nel, A. E. Comparison of the Mechanism of Toxicity of Zinc Oxide and Cerium Oxide Nanoparticles Based on Dissolution and Oxidative Stress Properties. ACS Nano. 2008, 2, 2121–2134. DOI: 10.1021/nn800511k.
  • Namvar, F.; Rahman, H. S.; Mohamad, R.; Azizi, S.; Tahir, P. M.; Chartrand, M. S.; Yeap, S. K. Cytotoxic Effects of Biosynthesized Zinc Oxide Nanoparticles on Murine Cell Lines. Evid. Based Complement. Alternat. Med. 2015, 2015, 593014. DOI: 10.1155/2015/593014.
  • Attia, H.; Nounou, H.; Shalaby, M. Zinc Oxide Nanoparticles Induced Oxidative DNA Damage, Inflammation and Apoptosis in Rat's Brain after Oral Exposure. Toxics 2018, 6, 29. DOI: 10.3390/toxics6020029.
  • Ajdary, M.; Negahdary, M.; Chelongar, R.; Zadeh, S. The Antioxidant Effects of Silver, Gold, and Zinc Oxide Nanoparticles on Male Mice in In Vivo Condition. Adv. Biomed. Res. 2015, 4, 69. DOI: 10.4103/2277-9175.153893.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.