468
Views
18
CrossRef citations to date
0
Altmetric
Article

Synthesis and characterization of ZnO/PVA nanocomposites for antibacterial and electrochemical applications

ORCID Icon, ORCID Icon, &
Pages 1127-1138 | Received 18 Jun 2020, Accepted 02 Aug 2020, Published online: 03 Sep 2020

References

  • Dadi, R.; Azouani, R.; Traore, M.; Mielcarek, C.; Kanaev, A. Antibacterial Activity of ZnO and CuO Nanoparticles against Gram Positive and Gram Negative Strains. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 104, 109968. DOI: 10.1016/j.msec.2019.109968.
  • Pavithra, K. S.; Yashoda, M. P.; Prasannakumar, S.; Mutalik, S. Viscosity and Thermal Conductivity of ZnO–Water-Based Nanofluids Stabilized by Grafted SMA-g-MPEG Comb-Shaped Copolymer for Heat Transfer Applications. Iran. Polym. J. 2020, 29, 185–196. DOI: 10.1007/s13726-020-00784-x.
  • Espitia, P. J. P.; Soares, N.; de, F. F.; Coimbra, J. S.; dos R.; de Andrade, N. J.; Cruz, R. S.; Medeiros, E. A. A. Zinc Oxide Nanoparticles: Synthesis, Antimicrobial Activity and Food Packaging Applications. Food Bioprocess Technol. 2012, 5, 1447–1464. DOI: 10.1007/s11947-012-0797-6.
  • Yemmireddy, V. K.; Hung, Y.-C. Using Photocatalyst Metal Oxides as Antimicrobial Surface Coatings to Ensure Food Safety-Opportunities and Challenges. Compr. Rev. Food Sci. Food Saf. 2017, 16, 617–631. DOI: 10.1111/1541-4337.12267.
  • Nagvenkar, A. P.; Deokar, A.; Perelshtein, I.; Gedanken, A. A One-Step Sonochemical Synthesis of Stable ZnO-PVA Nanocolloid as a Potential Biocidal Agent. J. Mater. Chem. B 2016, 4, 2124–2132. DOI: 10.1039/c6tb00033a.
  • Machala, L.; TučEk, J.; ZbořIl, R. Polymorphous Transformations of Nanometric Iron(III) Oxide: A Review. Chem. Mater. 2011, 23, 3255–3272. DOI: 10.1021/cm200397g.
  • Abebe, B.; Ananda Murthy, H. C.; Dessie, Y. Synthesis and Characterization of Ti–Fe Oxide Nanomaterials: Adsorption–Degradation of Methyl Orange Dye. Arab. J. Sci. Eng. 2020, 45, 4609–4620. DOI: 10.1007/s13369-019-04328-1.
  • Basnet, P.; Larsen, G. K.; Jadeja, R. P.; Hung, Y.; Zhao, Y. α-Fe2O3 Nanocolumns and Nanorods Fabricated by Electron Beam Evaporation for Visible Light Photocatalytic and Antimicrobial Applications. ACS Appl. Mater. Interfaces 2013, 5, 2085–2095. DOI: 10.1021/am303017c.
  • Suryavanshi, R. D.; Rajpure, K. Y. Spray Deposited Fe 2 O 3 and Stratified Fe 2 O 3/ZnO Novel Photoelectrode for Photoelectrocatalytic Degradation of Benzoic Acid under Solar Light Illumination. J. Photochem. Photobiol. A Chem. 2018, 357, 72–80. DOI: 10.1016/j.jphotochem.2018.02.008.
  • Zheng, Z.; Olayinka, O.; Li, B. 2S-Soy Protein-Based Biopolymer as a Non-Covalent Surfactant and Its Effects on Electrical Conduction and Dielectric Relaxation of Polymer Nanocomposites. Eng. Sci. 2018, 4, 87–99. DOI: 10.30919/es8d766.
  • Hu, W.; Huang, J.; Zhang, X.; Zhao, S.; Pei, L.; Zhang, C.; Liu, Y.; Wang, Z. A Mechanically Robust and Reversibly Wettable Benzoxazine/Epoxy/Mesoporous TiO2 Coating for Oil/Water Separation. Appl. Surf. Sci. 2020, 507, 145168. DOI: 10.1016/j.apsusc.2019.145168.
  • Hou, P.; Li, R.; Li, Q.; Lu, N.; Wang, K.; Liu, M.; Cheng, X.; Shah, S. Novel Superhydrophobic Cement-Based Materials Achieved by Construction of Hierarchical Surface Structure with FAS/SiO2 Hybrid Nanocomposites. ES Mater. Manuf. 2018, 1, 57–66. DOI: 10.30919/esmm5f125.
  • Zhang, D.; Sun, J.; Lee, L. J.; Castro, J. M. Overview of Ultrasonic Assisted Manufacturing Multifunctional Carbon Nanotube Nanopaper Based Polymer Nanocomposites. Eng. Sci. 2020, 10, 35–50. DOI: 10.30919/es5e1002.
  • Gao, L.; Zhang, L.; Lyu, X.; Lu, G.; Liu, Q. Corrole Functionalized Iron Oxide Nanocomposites as Enhanced Peroxidase Mimic and Their Application in H2O2 and Glucose Colorimetric Sensing. Eng. Sci. 2018, 1, 69–77. DOI: 10.30919/espub.es.180314.
  • Zheng, Y.; Wang, X.; Wu, G. Chemical Modification of Carbon Fiber with Diethylenetriaminepentaacetic Acid/Halloysite Nanotube as a Multifunctional Interfacial Reinforcement for Silicone Resin Composites. Polym. Adv. Technol. 2020, 31, 527–535. DOI: 10.1002/pat.4793.
  • He, Y.; Chen, Q.; Yang, S.; Lu, C.; Feng, M.; Jiang, Y.; Cao, G.; Zhang, J.; Liu, C. Micro-Crack Behavior of Carbon Fiber Reinforced Fe3O4/Graphene Oxide Modified Epoxy Composites for Cryogenic Application. Compos. A Appl. Sci. Manuf. 2018, 108, 12–22. DOI: 10.1016/j.compositesa.2018.02.014.
  • Abebe, B.; Murthy, H. A.; Amare, E. Enhancing the Photocatalytic Efficiency of ZnO: Defects, Heterojunction, and Optimization. Environ. Nanotechnol. Monit. Manag. 2020, 14, 100336. DOI: 10.1016/j.enmm.2020.100336.
  • Nair, S.; Sasidharan, A.; Divya Rani, V. V.; Menon, D.; Nair, S.; Manzoor, K.; Raina, S. Role of Size Scale of ZnO Nanoparticles and Microparticles on Toxicity toward Bacteria and Osteoblast Cancer Cells. J. Mater. Sci. Mater. Med. 2009, 20, 235–241. DOI: 10.1007/s10856-008-3548-5.
  • Kotb, E.; Ahmed, A. A.; Saleh, T. A.; Ajeebi, A. M.; Al-Gharsan, M. S.; Aldahmash, N. F. Pseudobactins Bounded Iron Nanoparticles for Control of an Antibiotic-Resistant Pseudomonas Aeruginosa Ryn32. Biotechnol. Prog. 2020, 36, e2907. DOI: 10.1002/btpr.2907.
  • Alswat, A. A.; Ahmad, M.; Bin Saleh, T. A.; Hussein, M. Z.; Bin Ibrahim, N. A. Effect of Zinc Oxide Amounts on the Properties and Antibacterial Activities of Zeolite/Zinc Oxide Nanocomposite. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 68, 505–511. DOI: 10.1016/j.msec.2016.06.028.
  • Adio, S. O.; Omar, M. H.; Asif, M.; Saleh, T. A. Arsenic and Selenium Removal from Water Using Biosynthesized Nanoscale Zero-Valent Iron: A Factorial Design Analysis. Process Saf. Environ. Prot. 2017, 107, 518–527. DOI: 10.1016/j.psep.2017.03.004.
  • Alswat, A. A.; Ahmad, M.; Bin; Hussein, M. Z.; Ibrahim, N. A.; Saleh, T. A. Copper Oxide Nanoparticles-Loaded Zeolite and Its Characteristics and Antibacterial Activities. J. Mater. Sci. Technol. 2017, 33, 889–896. DOI: 10.1016/j.jmst.2017.03.015.
  • Samin, S.; Tsori, Y. Reversible Pore Gating in Aqueous Mixtures via External Potential. Colloid Interface Sci. Commun. 2016, 12, 9–12. DOI: 10.1016/j.colcom.2016.04.002.
  • Shahc, N.; Aslam, S.; Ul-Islam, M.; Arain, M. B.; Rehan, T.; Naeem, M.; Ullah, M. W.; Yang, G. Fabrication of Thermally Stable Graphite-Based Poly(Acrylonitrile-Co-Acrylic Acid) Composite with Impressive Antimicrobial Properties. Eng. Sci. 2019, 6, 77–85. DOI: 10.30919/es8d758.
  • Hao, X.; Chen, S.; Qin, D.; Zhang, M.; Li, W.; Fan, J.; Wang, C.; Dong, M.; Zhang, J.; Cheng, F.; et al. Antifouling and Antibacterial Behaviors of Capsaicin-Based PH Responsive Smart Coatings in Marine Environments. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 108, 110361. DOI: 10.1016/j.msec.2019.110361.
  • Lin, J.; Chen, X.; Chen, C.; Hu, J.; Zhou, C.; Cai, X.; Wang, W.; Zheng, C.; Zhang, P.; Cheng, J.; et al. Durably Antibacterial and Bacterially Antiadhesive Cotton Fabrics Coated by Cationic Fluorinated Polymers. ACS Appl. Mater. Interfaces 2018, 10, 6124–6136. DOI: 10.1021/acsami.7b16235.
  • Nautiyal, A.; Qiao, M.; Ren, T.; Huang, T.-S.; Zhang, X.; Cook, J.; Bozack, M. J.; Farag, R. High-Performance Engineered Conducting Polymer Film towards Antimicrobial/Anticorrosion Applications. Eng. Sci. 2018, 4, 70–78. DOI: 10.30919/es8d776.
  • Sun, H.; Yang, Z.; Pu, Y.; Dou, W.; Wang, C.; Wang, W.; Hao, X.; Chen, S.; Shao, Q.; Dong, M.; et al. Zinc Oxide/Vanadium Pentoxide Heterostructures with Enhanced Day-Night Antibacterial Activities. J Colloid Interface Sci. 2019, 547, 40–49. DOI: 10.1016/j.jcis.2019.03.061.
  • Thakur, N.; Manna, P.; Das, J. Synthesis and Biomedical Applications of Nanoceria, a Redox Active Nanoparticle. J. Nanobiotechnol. 2019, 17, 84. DOI: 10.1186/s12951-019-0516-9.
  • Wu, J.; Shi, S.; Wang, X.; Li, J.; Zong, R.; Chen, W. Controlled Synthesis and Optimum Luminescence of Sm 3+ -Activated Nano/Submicroscale Ceria Particles by a Facile Approach. J. Mater. Chem. C 2014, 2, 2786–2792. DOI: 10.1039/C3TC32424A.
  • Jassby, D.; Farner Budarz, J.; Wiesner, M. Impact of Aggregate Size and Structure on the Photocatalytic Properties of TiO2 and ZnO nanoparticles. Environ. Sci. Technol. 2012, 46, 6934–6941. DOI: 10.1021/es202009h.
  • Madkour, M.; Bumajdad, A.; Al-Sagheer, F. To What Extent Do Polymeric Stabilizers Affect Nanoparticles Characteristics? Adv. Colloid Interface Sci. 2019, 270, 38–53. DOI: 10.1016/j.cis.2019.05.004.
  • Zhang, Z.; Wu, Y.; Wang, Z.; Zou, X.; Zhao, Y.; Sun, L. Fabrication of Silver Nanoparticles Embedded into Polyvinyl Alcohol (Ag/PVA) Composite Nanofibrous Films through Electrospinning for Antibacterial and Surface-Enhanced Raman Scattering (SERS) Activities. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 69, 462–469. DOI: 10.1016/j.msec.2016.07.015.
  • Abd-Elrahman, M. I. Synthesis of Polyvinyl Alcohol–Zinc Oxide Composite by Mechanical Milling: Thermal and Infrared Studies. Nanoscale Microscale Thermophys. Eng. 2013, 17, 194–203. DOI: 10.1080/15567265.2013.776152.
  • Mallakpour, S.; Abdolmaleki, A.; Moosavi, S. E. Green Route for the Synthesis of Alanine-Based Poly(Amide-Imide) Nanocomposites Reinforced with the Modified ZnO by Poly(Vinyl Alcohol) as a Biocompatible Coupling Agent. Polym. Plast. Technol. Eng. 2015, 54, 1448–1456. DOI: 10.1080/03602559.2014.996907.
  • Kumar, S.; Krishnakumar, B.; Sobral, A. J. F. N.; Koh, J. Bio-Based (Chitosan/PVA/ZnO) Nanocomposites Film: Thermally Stable and Photoluminescence Material for Removal of Organic Dye. Carbohydr. Polym. 2019, 205, 559–564. DOI: 10.1016/j.carbpol.2018.10.108.
  • Radhamani, A. V.; Shareef, K. M.; Rao, M. S. R. ZnO@MnO2 Core-Shell Nanofiber Cathodes for High Performance Asymmetric Supercapacitors . ACS Appl. Mater. Interfaces 2016, 8, 30531–30542. DOI: 10.1021/acsami.6b08082.
  • Alder, C. M.; Hayler, J. D.; Henderson, R. K.; Redman, A. M.; Shukla, L.; Shuster, L. E.; Sneddon, H. F. Updating and Further Expanding GSK’s Solvent Sustainability Guide. Green Chem. 2016, 18, 3879–3890. DOI: 10.1039/C6GC00611F.
  • Abebe, B.; Murthy, H. C. A.; Zerefa, E.; Adimasu, Y. PVA Assisted ZnO Based Mesoporous Ternary Metal Oxides Nanomaterials: Synthesis, Optimization, and Evaluation of Antibacterial Activity. Mater. Res. Express 2020, 7, 045011. DOI: 10.1088/2053-1591/ab87d5.
  • Liu, B.; You, Y.; Zhang, H.; Wu, H.; Jin, J.; Liu, H. Synthesis of ZnO Nano-Powders via a Novel PVA-Assisted Freeze-Drying Process. RSC Adv. 2016, 6, 110349–110355. DOI: 10.1039/C6RA24154A.
  • Xie, P.; Li, Y.; Hou, Q.; Sui, K.; Liu, C.; Fu, X.; Zhang, J.; Murugadoss, V.; Fan, J.; Wang, Y.; et al. Tunneling-Induced Negative Permittivity in Ni/MnO Nanocomposites by a Bio-Gel Derived Strategy. J. Mater. Chem. C 2020, 8, 3029–3039. DOI: 10.1039/C9TC06378A.
  • Abebe, B.; H C, A. M.; Zerefa, E.; Abdisa, E. Porous PVA/Zn–Fe–Mn Oxide Nanocomposites: Methylene Blue Dye Adsorption Studies. Mater. Res. Express 2020, 7, 065002. DOI: 10.1088/2053-1591/ab94fc.
  • Lachheb, H.; Ajala, F.; Hamrouni, A.; Houas, A.; Parrino, F.; Palmisano, L. Electron Transfer in ZnO–Fe 2 O 3 Aqueous Slurry Systems and Its Effects on Visible Light Photocatalytic Activity. Catal. Sci. Technol. 2017, 7, 4041–4047. DOI: 10.1039/C7CY01085K.
  • Maya-Treviño, M. L.; Villanueva-Rodríguez, M.; Guzmán-Mar, J. L.; Hinojosa-Reyes, L.; Hernández-Ramírez, A. Comparison of the Solar Photocatalytic Activity of ZnO-Fe2O3 and ZnO-Fe(0) on 2,4-D degradation in a CPC reactor. Photochem. Photobiol. Sci. 2015, 14, 543–549. DOI: 10.1039/c4pp00274a.
  • Shah, A. H.; Manikandan, E.; Basheer Ahamed, M.; Ahmad Mir, D.; Ahmad Mir, S. Antibacterial and Blue Shift Investigations in Sol–Gel Synthesized CrxZn1 − xO Nanostructures. J. Lumin. 2014, 145, 944–950. DOI: 10.1016/j.jlumin.2013.09.023.
  • Saleh, T. A. Simultaneous Adsorptive Desulfurization of Diesel Fuel over Bimetallic Nanoparticles Loaded on Activated Carbon. J. Clean. Prod. 2018, 172, 2123–2132. DOI: 10.1016/j.jclepro.2017.11.208.
  • Taufik, A.; Tju, H.; Saleh, R. Comparison of Catalytic Activities for Sonocatalytic, Photocatalytic and Sonophotocatalytic Degradation of Methylene Blue in the Presence of Magnetic Fe 3 O 4/CuO/ZnO Nanocomposites. J. Phys. Conf. Ser. 2016, 710, 012004. DOI: 10.1088/1742-6596/710/1/012004.
  • Balogun, M.-S.; Wu, Z.; Luo, Y.; Qiu, W.; Fan, X.; Long, B.; Huang, M.; Liu, P.; Tong, Y. High Power Density Nitridated Hematite (α-Fe2O3) Nanorods as Anode for High-Performance Flexible Lithium Ion Batteries. J. Power Sources 2016, 308, 7–17. DOI: 10.1016/j.jpowsour.2016.01.043.
  • Hong, R. Y.; Li, J. H.; Chen, L. L.; Liu, D. Q.; Li, H. Z.; Zheng, Y.; Ding, J. Synthesis, Surface Modification and Photocatalytic Property of ZnO Nanoparticles. Powder Technol. 2009, 189, 426–432. DOI: 10.1016/j.powtec.2008.07.004.
  • Miao, Y.; Zhang, H.; Yuan, S.; Jiao, Z.; Zhu, X. Preparation of Flower-like ZnO Architectures Assembled with Nanosheets for Enhanced Photocatalytic Activity. J Colloid Interface Sci. 2016, 462, 9–18. DOI: 10.1016/j.jcis.2015.09.064.
  • Liu, J.; He, J.; Wang, L.; Li, R.; Chen, P.; Rao, X.; Deng, L.; Rong, L.; Lei, J. NiO-PTA Supported on ZIF-8 as a Highly Effective Catalyst for Hydrocracking of Jatropha Oil. Sci. Rep. 2016, 6, 23667. DOI: 10.1038/srep23667.
  • Saleh, T. A. Mercury Sorption by Silica/Carbon Nanotubes and Silica/Activated Carbon: A Comparison Study. J. Water Supply Res. Technol. 2015, 64, 892–903. DOI: 10.2166/aqua.2015.050.
  • Saleh, T. A. Isotherm, Kinetic, and Thermodynamic Studies on Hg(II) Adsorption from Aqueous Solution by Silica- Multiwall Carbon Nanotubes. Environ. Sci. Pollut. Res. Int. 2015, 22, 16721–16731. DOI: 10.1007/s11356-015-4866-z.
  • Abebe, B.; Ananda Murthy, H. C. Synthesis and Characterization of Ti-Fe Oxide Nanomaterials for Lead Removal. J. Nanomater. 2018, 2018, 1–10. DOI: 10.1155/2018/9651039.
  • Liu, X.; Ye, L.; Liu, S.; Li, Y.; Ji, X. Photocatalytic Reduction of CO2 by ZnO Micro/Nanomaterials with Different Morphologies and Ratios of {0001} Facets. Sci. Rep. 2016, 6, 38474. DOI: 10.1038/srep38474.
  • Zhao, J.; Zhao, Z.; Li, N.; Nan, J.; Yu, R.; Du, J. Visible-Light-Driven Photocatalytic Degradation of Ciprofloxacin by a Ternary Mn2O3/Mn3O4/MnO2 Valence State Heterojunction. Chem. Eng. J. 2018, 353, 805–813. DOI: 10.1016/j.cej.2018.07.163.
  • Zhai, T.; Xie, S.; Zhao, Y.; Sun, X.; Lu, X.; Yu, M.; Xu, M.; Xiao, F.; Tong, Y. Controllable Synthesis of Hierarchical ZnO Nanodisks for Highly Photocatalytic Activity. CrystEngComm 2012, 14, 1850–1855. DOI: 10.1039/c1ce06013a.
  • Raghupathi, K. R.; Koodali, R. T.; Manna, A. C. Size-Dependent Bacterial Growth Inhibition and Mechanism of Antibacterial Activity of Zinc Oxide Nanoparticles. Langmuir 2011, 27, 4020–4028. DOI: 10.1021/la104825u.
  • Gordon, T.; Perlstein, B.; Houbara, O.; Felner, I.; Banin, E.; Margel, S. Synthesis and Characterization of Zinc/Iron Oxide Composite Nanoparticles and Their Antibacterial Properties. Colloids Surf. A Physicochem. Eng. Asp. 2011, 374, 1–8. DOI: 10.1016/j.colsurfa.2010.10.015.
  • Stoimenov, P. K.; Klinger, R. L.; Marchin, G. L.; Klabunde, K. J. Metal Oxide Nanoparticles as Bactericidal Agents. Langmuir 2002, 18, 6679–6686. DOI: 10.1021/la0202374.
  • Zholobak, N. M.; Ivanov, V. K.; Shcherbakov, A. B. Interaction of Nanoceria with Microorganisms. In Nanobiomaterials in antimicrobial therapy; Elsevier, William Andrew Publishing, Norwich, USA, 2016; pp 419–450. DOI: 10.1016/B978-0-323-42864-4.00012-9.
  • Kannan, S. K.; Sundrarajan, M. A Green Approach for the Synthesis of a Cerium Oxide Nanoparticle: Characterization and Antibacterial Activity. Int. J. Nanosci. 2014, 13, 1450018. DOI: 10.1142/S0219581X14500185.
  • Russell, A. D. Similarities and Differences in the Responses of Microorganisms to Biocides. J. Antimicrob. Chemother. 2003, 52, 750–763. DOI: 10.1093/jac/dkg422.
  • Das, B.; Dash, S. K.; Mandal, D.; Ghosh, T.; Chattopadhyay, S.; Tripathy, S.; Das, S.; Dey, S. K.; Das, D.; Roy, S. Green Synthesized Silver Nanoparticles Destroy Multidrug Resistant Bacteria via Reactive Oxygen Species Mediated Membrane Damage. Arab. J. Chem. 2017, 10, 862–876. DOI: 10.1016/j.arabjc.2015.08.008.
  • Li, Z.; Mi, Y.; Liu, X.; Liu, S.; Yang, S.; Wang, J. Flexible Graphene/MnO2 Composite Papers for Supercapacitor Electrodes. J. Mater. Chem. 2011, 21, 14706. DOI: 10.1039/c1jm11941a.
  • Li, Z.; Zhou, Z.; Yun, G.; Shi, K.; Lv, X.; Yang, B. High-Performance Solid-State Supercapacitors Based on Graphene-ZnO Hybrid Nanocomposites. Nanoscale Res. Lett. 2013, 8, 473. DOI: 10.1186/1556-276X-8-473.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.