180
Views
2
CrossRef citations to date
0
Altmetric
Article

Silver nanoparticles decorated graphene oxide nanocomposite for bone regeneration applications

, , &
Pages 1347-1360 | Received 12 Jun 2020, Accepted 07 Sep 2020, Published online: 30 Oct 2020

References

  • Nikolova, M. P.; Chavali, M. S. Recent Advances in Biomaterials for 3D Scaffolds: A Review. Bioact. Mater. 2019, 4, 271–292. DOI: 10.1016/j.bioactmat.2019.10.005.
  • Pei, B.; Wang, W.; Dunne, N.; Li, X. Applications of Carbon Nanotubes in Bone Tissue Regeneration and Engineering: Superiority, Concerns, Current Advancements, and Prospects. Nanomaterials 2019, 9, 1501. DOI: 10.3390/nano9101501.
  • Jaidev, L.; Kumar, S.; Chatterjee, K. J. C.; Biointerfaces, S. B. Multi-Biofunctional Polymer Graphene Composite for Bone Tissue Regeneration That Elutes Copper Ions to Impart Angiogenic, Osteogenic and Bactericidal Properties. Colloids Surf B Biointerfaces. 2017, 159, 293–302. DOI: 10.1016/j.colsurfb.2017.07.083.
  • Li, M.; Xiong, P.; Yan, F.; Li, S.; Ren, C.; Yin, Z.; Li, A.; Li, H.; Ji, X.; Zheng, Y. J. B. m. An Overview of Graphene-Based Hydroxyapatite Composites for Orthopedic Applications. Bioact. Mater. 2018, 3, 1–18.
  • Chen, L.; Li, J.; Chen, Z.; Gu, Z.; Yan, L.; Zhao, F.; Zhang, A. Toxicological Evaluation of Graphene-Family Nanomaterials. J. Nanosci. Nanotechnol. 2020, 20, 1993–2006. DOI: 10.1166/jnn.2020.17364.
  • Smith, A. T.; LaChance, A. M.; Zeng, S.; Liu, B.; Sun, L. Synthesis, Properties, and Applications of Graphene Oxide/Reduced Graphene Oxide and Their Nanocomposites. Nano Mater. Sci. 2019, 1, 31–47. DOI: 10.1016/j.nanoms.2019.02.004.
  • Hermenean, A.; Dinescu, S.; Ionita, M.; Costache, M. The Impact of Graphene Oxide on Bone Regeneration Therapies. In Advanced Techniques in Bone Regeneration; IntechOpen: London, 2016, pp. 151–167.
  • Fu, X.; Wang, Y.; Liu, Y.; Liu, H.; Fu, L.; Wen, J.; Li, J.; Wei, P.; Chen, L. J. A. A Graphene Oxide/Gold Nanoparticle-Based Amplification Method for SERS Immunoassay of Cardiac Troponin I. Analyst. 2019, 144, 1582–1589. DOI: 10.1039/c8an02022a.
  • Dubey, N.; Bentini, R.; Islam, I.; Cao, T.; Castro Neto, A. H.; Rosa, V. Graphene: A Versatile Carbon-Based Material for Bone Tissue Engineering. Stem Cells Int. 2015, 2015, 804213. DOI: 10.1155/2015/804213.
  • Park, K. O.; Lee, J. H.; Park, J. H.; Shin, Y. C.; Huh, J. B.; Bae, J.-H.; Kang, S. H.; Hong, S. W.; Kim, B.; Yang, D. J.; et al. Graphene Oxide-Coated Guided Bone Regeneration Membranes with Enhanced Osteogenesis: Spectroscopic Analysis and Animal Study. Appl. Spectrosc. Rev. 2016, 51, 540–551. DOI: 10.1080/05704928.2016.1165687.
  • Golzar, H.; Mohammadrezaei, D.; Yadegari, A.; Rasoulianboroujeni, M.; Hashemi, M.; Omidi, M.; Yazdian, F.; Shalbaf, M.; Tayebi, L. Incorporation of Functionalized Reduced Graphene Oxide/Magnesium Nanohybrid to Enhance the Osteoinductivity Capability of 3D Printed Calcium Phosphate-Based Scaffolds. Compos. Part B Eng. 2020, 185, 107749. DOI: 10.1016/j.compositesb.2020.107749.
  • Fang, H.; Luo, C.; Liu, S.; Zhou, M.; Zeng, Y.; Hou, J.; Chen, L.; Mou, S.; Sun, J.; Wang, Z. A Biocompatible Vascularized Graphene Oxide (GO)-Collagen Chamber with Osteoinductive and anti-Fibrosis Effects Promotes Bone Regeneration in Vivo. Theranostics 2020, 10, 2759–2772. DOI: 10.7150/thno.42006.
  • Cheng, X.; Wan, Q.; Pei, X. Graphene Family Materials in Bone Tissue Regeneration: Perspectives and Challenges. Nanoscale Res. Lett. 2018, 13, 289–289. DOI: 10.1186/s11671-018-2694-z.
  • Guo, B.; Ma, P. X. Conducting Polymers for Tissue Engineering. Biomacromolecules 2018, 19, 1764–1782. DOI: 10.1021/acs.biomac.8b00276.
  • Dong, R.; Zhao, X.; Guo, B.; Ma, P. X. Self-Healing Conductive Injectable Hydrogels with Antibacterial Activity as Cell Delivery Carrier for Cardiac Cell Therapy. ACS Appl. Mater. Interfaces 2016, 8, 17138–17150. DOI: 10.1021/acsami.6b04911.
  • Lin, D.; Qin, T.; Wang, Y.; Sun, X.; Chen, L. Graphene Oxide Wrapped SERS Tags: multifunctional Platforms toward Optical Labeling, Photothermal Ablation of Bacteria, and the Monitoring of Killing Effect. ACS Appl. Mater. Interfaces. 2014, 6, 1320–1329.
  • Shin, D. S.; Kim, H. G.; Ahn, H. S.; Jeong, H. Y.; Kim, Y.-J.; Odkhuu, D.; Tsogbadrakh, N.; Lee, H.-B.-R.; Kim, B. H. Distribution of Oxygen Functional Groups of Graphene Oxide Obtained from Low-Temperature Atomic Layer Deposition of Titanium Oxide. RSC Adv. 2017, 7, 13979–13984. DOI: 10.1039/C7RA00114B.
  • Nurunnabi, M.; Parvez, K.; Nafiujjaman, M.; Revuri, V.; Khan, H. A.; Feng, X.; Lee, Y-k. Bioapplication of Graphene Oxide Derivatives: drug/Gene Delivery, Imaging, Polymeric Modification, Toxicology, Therapeutics and Challenges. RSC Adv. 2015, 5, 42141–42161. DOI: 10.1039/C5RA04756K.
  • Dasari Shareena, T. P.; McShan, D.; Dasmahapatra, A. K.; Tchounwou, P. B. A Review on Graphene-Based Nanomaterials in Biomedical Applications and Risks in Environment and Health. Nano-Micro Lett 2018, 10, 53. DOI: 10.1007/s40820-018-0206-4.
  • Tu, J.; Li, H.; Zhang, J.; Hu, D.; Cai, Z.; Yin, X.; Dong, L.; Huang, L.; Xiong, C.; Jiang, M. Latent Heat and Thermal Conductivity Enhancements in Polyethylene Glycol/Polyethylene Glycol-Grafted Graphene Oxide Composites. Adv. Compos. Hybrid Mater. 2019, 2, 471–480. DOI: 10.1007/s42114-019-00083-x.
  • Xu, G.; Zhang, L.; Yu, W.; Sun, Z.; Guan, J.; Zhang, J.; Lin, J.; Zhou, J.; Fan, J.; Murugadoss, V. J. N. Low Optical Dosage Heating-Reduced Viscosity for Fast and Large-Scale Cleanup of Spilled Crude Oil by Reduced Graphene Oxide Melamine Nanocomposite Adsorbents. Nanotechnology. 2020, 31, 225402.
  • Singh, N.; Jana, S.; Singh, G. P.; Dey, R. K. Graphene-Supported TiO2: study of Promotion of Charge Carrier in Photocatalytic Water Splitting and Methylene Blue Dye Degradation. Adv. Compos. Hybrid Mater. 2020, 3, 127–140. DOI: 10.1007/s42114-020-00140-w.
  • He, Y.; Chen, Q.; Yang, S.; Lu, C.; Feng, M.; Jiang, Y.; Cao, G.; Zhang, J.; Liu, C. Micro-Crack Behavior of Carbon Fiber Reinforced Fe3O4/Graphene Oxide Modified Epoxy Composites for Cryogenic Application. Compos. Part A Appl. Sci. Manuf. 2018, 108, 12–22. DOI: 10.1016/j.compositesa.2018.02.014.
  • Guo, Y.; Xu, G.; Yang, X.; Ruan, K.; Ma, T.; Zhang, Q.; Gu, J.; Wu, Y.; Liu, H.; Guo, Z. Significantly Enhanced and Precisely Modeled Thermal Conductivity in Polyimide Nanocomposites with Chemically Modified Graphene via in Situ Polymerization and Electrospinning-Hot Press Technology. J. Mater. Chem. C. 2018, 6, 3004–3015.
  • Guo, Y.; Yang, X.; Ruan, K.; Kong, J.; Dong, M.; Zhang, J.; Gu, J.; Guo, Z. J. Reduced Graphene Oxide Heterostructured Silver Nanoparticles Significantly Enhanced Thermal Conductivities in Hot-Pressed Electrospun Polyimide Nanocomposites. ACS Appl. Mater. Interfaces. 2019, 11, 25465–25473.
  • Ma, L.; Zhu, Y.; Feng, P.; Song, G.; Huang, Y.; Liu, H.; Zhang, J.; Fan, J.; Hou, H.; Guo, Z. Reinforcing Carbon Fiber Epoxy Composites with Triazine Derivatives Functionalized Graphene Oxide Modified Sizing Agent. Compos. Part B Eng. 2019, 176, 107078. DOI: 10.1016/j.compositesb.2019.107078.
  • Wang, L.; Hu, C.; Shao, L. The Antimicrobial Activity of Nanoparticles: present Situation and Prospects for the Future. Int. J. Nanomed. 2017, 12, 1227–1249. DOI: 10.2147/IJN.S121956.
  • Shao, W.; Liu, X.; Min, H.; Dong, G.; Feng, Q.; Zuo, S. Preparation, Characterization, and Antibacterial Activity of Silver Nanoparticle-Decorated Graphene Oxide Nanocomposite. ACS Appl. Mater. Interfaces 2015, 7, 6966–6973. DOI: 10.1021/acsami.5b00937.
  • Burdușel, A.-C.; Gherasim, O.; Grumezescu, A. M.; Mogoantă, L.; Ficai, A.; Andronescu, E. Biomedical Applications of Silver Nanoparticles: An up-to-Date Overview. Nanomaterials (Basel) 2018, 8, 681. DOI: 10.3390/nano8090681.
  • Dos Santos, C. A.; Seckler, M. M.; Ingle, A. P.; Gupta, I.; Galdiero, S.; Galdiero, M.; Gade, A.; Rai, M. Silver Nanoparticles: Therapeutical Uses, Toxicity, and Safety Issues. J. Pharmaceutical Sci. 2014, 103, 1931–1944. DOI: 10.1002/jps.24001.
  • Dakal, T. C.; Kumar, A.; Majumdar, R. S.; Yadav, V. Mechanistic Basis of Antimicrobial Actions of Silver Nanoparticles. Front Microbiol. 2016, 7, 1831–1831. DOI: 10.3389/fmicb.2016.01831.
  • Bindhu, M. R.; Umadevi, M. Antibacterial and Catalytic Activities of Green Synthesized Silver Nanoparticles. Spectrochimica Acta Part A Molecular Biomolecular Spectrosc. 2015, 135, 373–378. DOI: 10.1016/j.saa.2014.07.045.
  • Madhavan, P.; Hong, P.-Y.; Sougrat, R.; Nunes, S. P. Silver-Enhanced Block Copolymer Membranes with Biocidal Activity. ACS Appl. Mater. Interfaces 2014, 6, 18497–18501. DOI: 10.1021/am505594c.
  • Vimbela, G. V.; Ngo, S. M.; Fraze, C.; Yang, L.; Stout, D. A. Antibacterial Properties and Toxicity from Metallic Nanomaterials. Int. J. Nanomed. 2017, 12, 3941–3965. DOI: 10.2147/IJN.S134526.
  • Fan, Y.; Han, D.; Song, Z.; Sun, Z.; Dong, X.; Niu, L. Regulations of Silver Halide Nanostructure and Composites on Photocatalysis. Adv. Compos. Hybrid Mater. 2018, 1, 269–299.
  • Li, Y.; Zhang, T.; Jiang, B.; Zhao, L.; Liu, H.; Zhang, J.; Fan, J.; Guo, Z.; Huang, Y. Interfacially Reinforced Carbon Fiber Silicone Resin via Constructing Functional Nano-Structural Silver. Compos. Sci. Technol. 2019, 181, 107689.
  • Gu, H.; Xu, X.; Dong, M.; Xie, P.; Shao, Q.; Fan, R.; Liu, C.; Wu, S.; Wei, R.; Guo, Z. Carbon Nanospheres Induced High Negative Permittivity in Nanosilver-Polydopamine Metacomposites. Carbon 2019, 147, 550–558.
  • Ul-Islam, M.; Ali, J.; Khan, W.; Haider, A.; Shah, N.; Ahmad, M. W.; Ullah, M. W.; Yang, G. Fast 4-Nitrophenol Reduction Using Gelatin Hydrogel Containing Silver Nanoparticles. Eng. Sci. 2019, 8, 19–24.
  • Jiang, D.; Wang, Y.; Li, B.; Sun, C.; Wu, Z.; Yan, H.; Xing, L.; Qi, S.; Li, Y.; Liu, H. Flexible Sandwich Structural Strain Sensor Based on Silver Nanowires Decorated with Self‐Healing Substrate. Macromol. Mater. Eng. 2019, 304, 1900074.
  • Li, T.; Gao, Y.; Zheng, K.; Ma, Y.; Ding, D.; Zhang, H. Achieving Better Greenhouse Effect than Glass: Visibly Transparent and Low Emissivity Metal-Polymer Hybrid Metamaterials. ES Energy Environ. 2019, 5, 102–107.
  • Shankar, A.; Salcedo, E.; Berndt, A.; Choi, D.; Ryu, J. E. Pulsed Light Sintering of Silver Nanoparticles for Large Deformation of Printed Stretchable Electronics. Adv. Compos. Hybrid Mater. 2018, 1, 193–198. DOI: 10.1007/s42114-017-0012-3.
  • Yu, J.; Sun, L. Facile One-Pot Synthesis of Silver Nanoparticles Supported on α-Zirconium Phosphate Single-Layer Nanosheets. ES Mater.Manuf. 2019, 5, 24–28. DOI: 10.30919/esmm5f223.
  • Wang, S.; Wang, W.; Yue, L.; Cui, S.; Wang, H.; Wang, C.; Chen, S. Hierarchical Cu2O Nanowires Covered by Silver Nanoparticles-Doped Carbon Layer Supported on Cu Foam for Rapid and Efficient Water Disinfection with Lower Voltage. Chem. Eng. J. 2020, 382, 122855.
  • Zhang, X.-F.; Liu, Z.-G.; Shen, W.; Gurunathan, S. Silver Nanoparticles: Synthesis, Characterization, Properties, Applications, and Therapeutic Approaches. IJMS 2016, 17, 1534. DOI: 10.3390/ijms17091534.
  • Zhao, R.; Lv, M.; Li, Y.; Sun, M.; Kong, W.; Wang, L.; Song, S.; Fan, C.; Jia, L.; Qiu, S. Stable Nanocomposite Based on PEGylated and Silver Nanoparticles Loaded Graphene Oxide for Long-Term Antibacterial Activity. ACS Appl. Mater. Interfaces 2017, 9, 15328–15341.
  • Peighambardoust, S. J.; Rikhtegar, H.; Mohammadzadeh Pakdel, P.; Mirmohseni, A. Electrically Conductive Epoxy‐Based Nanocomposite Adhesives Loaded with Silver‐Coated Copper and Silver‐Coated Reduced Graphene Oxide Nanoparticles. Polym Adv Technol. 2019, 30, 1996–2004.
  • Sarkar, K.; Sarkar, K. J.; Banerji, P. Synthesis of Graphene Oxide–Silver Nanocomposite with Photochemically Grown Silver Nanoparticles to Use as a Channel Material in Thin Film Field Effect Transistors. RSC Adv. 2015, 5, 107811–107821. DOI: 10.1039/C5RA23069A.
  • Wierzbicki, M.; Jaworski, S.; Sawosz, E.; Jung, A.; Gielerak, G.; Jaremek, H.; Łojkowski, W.; Woźniak, B.; Stobiński, L.; Małolepszy, A.; Chwalibog, A. Graphene Oxide in a Composite with Silver Nanoparticles Reduces the Fibroblast and Endothelial Cell Cytotoxicity of an Antibacterial Nanoplatform. Nanoscale Res. Lett. 2019, 14, 320 DOI: 10.1186/s11671-019-3166-9.
  • Kumari, S.; Sharma, P.; Yadav, S.; Kumar, J.; Vij, A.; Rawat, P.; Kumar, S.; Sinha, C.; Bhattacharya, J.; Srivastava, C. M.; Majumder, S. A Novel Synthesis of the Graphene Oxide-Silver (GO-Ag) Nanocomposite for Unique Physiochemical Applications. ACS Omega 2020, 5, 5041–5047. DOI: 10.1021/acsomega.9b03976.
  • de Luna, L. A. V.; Zorgi, N. E.; de Moraes, A. C. M.; da Silva, D. S.; Consonni, S. R.; Giorgio, S.; Alves, O. L. J. N. In Vitro Immunotoxicological Assessment of a Potent Microbicidal Nanocomposite Based on Graphene Oxide and Silver nanoparticles. Nanotoxicology 2019, 13, 189–203. DOI: 10.1080/17435390.2018.1537410.
  • Shahmoradi, S.; Golzar, H.; Hashemi, M.; Mansouri, V.; Omidi, M.; Yazdian, F.; Yadegari, A.; Tayebi, L. J. N. Optimizing the Nanostructure of Graphene Oxide/Silver/Arginine for Effective Wound Healing. Biomater. Sci. 2018, 29, 475101. DOI: 10.1088/1361-6528/aadedc.
  • Tong, C.; Li, L.; Xiao, F.; Fan, J.; Zhong, X.; Liu, X.; Liu, B.; Wu, Z.; Zhou, J. Daptomycin and AgNP co-loaded rGO nanocomposites for specific treatment of Gram-positive bacterial infection in vitro and in vivo. Biomater. Sci. 2019, 7, 5097–5111. DOI: 10.1039/c9bm01229j.
  • Sun, K.; Wang, L.; Wang, Z.; Wu, X.; Fan, G.; Wang, Z.; Cheng, C.; Fan, R.; Dong, M.; Guo, Z. Flexible Silver Nanowire/Carbon Fiber Felt Metacomposites with Weakly Negative Permittivity Behavior. Phys. Chem. Chem. Phys. 2020, 22, 5114–5122.
  • Yuan, R.; Yuan, J.; Wu, Y.; Ju, P.; Ji, L.; Li, H.; Chen, L.; Zhou, H.; Chen, J. Graphene Oxide-Monohydrated Manganese Phosphate Composites: Preparation via Modified Hummers Method. Colloids Surf, A. 2018, 547, 56–63. DOI: 10.1016/j.colsurfa.2018.03.023.
  • Peng, H.; Meng, L.; Niu, L.; Lu, Q. Simultaneous Reduction and Surface Functionalization of Graphene Oxide by Natural Cellulose with the Assistance of the Ionic Liquid. J. Phys. Chem. C. 2012, 116, 16294–16299. DOI: 10.1021/jp3043889.
  • Cai, D.; Song, M. Preparation of Fully Exfoliated Graphite Oxide Nanoplatelets in Organic Solvents. J. Mater. Chem. 2007, 17, 3678–3680. DOI: 10.1039/b705906j.
  • Watson, V. G. Decoration of Graphene Oxide with Silver Nanoparticles and Controlling the Silver Nanoparticle Loading on Graphene Oxide. University of Dayton, 2014.
  • Hui, K. S.; Hui, K. N.; Dinh, D. A.; Tsang, C. H.; Cho, Y. R.; Zhou, W.; Hong, X.; Chun, H.-H. Green Synthesis of Dimension-Controlled Silver Nanoparticle–Graphene Oxide with in Situ Ultrasonication. Acta Mater. 2014, 64, 326–332. DOI: 10.1016/j.actamat.2013.10.045.
  • Nasiri-Tabrizi, B.; Ebrahimi-Kahrizsangi, R.; Bahrami-Karkevandi, M. Effect of Excess Boron Oxide on the Formation of Tungsten Boride Nanocomposites by Mechanically Induced Self-Sustaining Reaction. Ceram. Int. 2014, 40, 14235–14246. DOI: 10.1016/j.ceramint.2014.06.013.
  • Pichaimuthu, K.; Keerthi, M.; Chen, S.-M.; Chen, T.-W.; Su, C. Silver Nanoparticles Decorated on Graphene Oxide Sheets for Electrochemical Detection of Ascorbic Acid (AA) in Human Urine Sample. Int. J. Electrochem. Sci. 2018, 13, 7859–7869. DOI: 10.20964/2018.08.16.
  • de Faria, A. F.; Martinez, D. S. T.; Meira, S. M. M.; de Moraes, A. C. M.; Brandelli, A.; Filho, A. G. S.; Alves, O. L. Anti-Adhesion and Antibacterial Activity of Silver Nanoparticles Supported on Graphene Oxide Sheets. Colloids Surfaces B Biointerfaces 2014, 113, 115–124. DOI: 10.1016/j.colsurfb.2013.08.006.
  • Azarang, M.; Shuhaimi, A.; Sookhakian, M. Crystalline Quality Assessment, Photocurrent Response and Optical Properties of Reduced Graphene Oxide Uniformly Decorated Zinc Oxide Nanoparticles Based on the Graphene Oxide Concentration. RSC Adv. 2015, 5, 53117–53128. DOI: 10.1039/C5RA06123G.
  • PANalytical, B. X’pert Highscore plus. X’Pert HighScore plus, Lelyweg, Almelo, The Netherlands 2002, 2.
  • Papailias, I.; Giannouri, M.; Trapalis, A.; Todorova, N.; Giannakopoulou, T.; Boukos, N.; Lekakou, C. Decoration of Crumpled rGO Sheets with Ag Nanoparticles by Spray Pyrolysis. Appl. Surf. Sci. 2015, 358, 84–90. DOI: 10.1016/j.apsusc.2015.08.143.
  • Markoulidis, F.; Todorova, N.; Grilli, R.; Lekakou, C.; Trapalis, C. Composite Electrodes of Activated Carbon and Multiwall Carbon Nanotubes Decorated with Silver Nanoparticles for High Power Energy Storage. J Compos Sci 2019, 3, 97. DOI: 10.3390/jcs3040097.
  • Ferrari, A. C.; Meyer, J.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K.; Roth, S. J. P.; R, l. Raman Spectrum of Graphene and Graphene Layers. Phys. Rev. Lett. 2006, 97, 187401 DOI: 10.1103/PhysRevLett.97.187401.
  • Kudin, K. N.; Ozbas, B.; Schniepp, H. C.; Prud'Homme, R. K.; Aksay, I. A.; Car, R. J. N. l. Raman Spectra of Graphite Oxide and Functionalized Graphene sheets. Nano Lett. 2008, 8, 36–41. DOI: 10.1021/nl071822y.
  • Chen, J.; Zheng, X.; Wang, H.; Zheng, W. Graphene oxide-Ag nanocomposite: In situ photochemical synthesis and application as a surface-enhanced Raman scattering substrate. Thin Solid Films 2011, 520, 179–185.
  • Sim, L. C.; Leong, K. H.; Ibrahim, S.; Saravanan, P. Graphene Oxide and Ag Engulfed TiO 2 Nanotube Arrays for Enhanced Electron Mobility and Visible-Light-Driven Photocatalytic Performance. J. Mater. Chem. A. 2014, 2, 5315–5322. DOI: 10.1039/C3TA14857B.
  • Richards, W. D.; Miara, L. J.; Wang, Y.; Kim, J. C.; Ceder, G. Interface Stability in Solid-State Batteries. Chem. Mater. 2016, 28, 266–273. DOI: 10.1021/acs.chemmater.5b04082.
  • Mitchell, H.; Hamilton, T.; Steggerda, F.; Bean, H. The Chemical Composition of the Adult Human Body and Its Bearing on the Biochemistry of Growth. J. Biol. Chem. 1945, 158, 625–637.
  • Cobos, M.; De-La-Pinta, I.; Quindós, G.; Fernández, M. J.; Fernández, M. D. Graphene Oxide–Silver Nanoparticle Nanohybrids: Synthesis Characterization, and Antimicrobial Properties. Nanomaterials (Basel). 2020, 10, 376.
  • Bao, Q.; Zhang, D.; Qi, P. Synthesis and Characterization of Silver Nanoparticle and Graphene Oxide Nanosheet Composites as a Bactericidal Agent for Water Disinfection. J. Colloid Interface Sci. 2011, 360, 463–470.
  • Malanovic, N.; Lohner, K. Gram-Positive Bacterial Cell Envelopes: The Impact on the Activity of Antimicrobial Peptides. Biochim. Biophys. Acta. 2016, 1858, 936–946. DOI: 10.1016/j.bbamem.2015.11.004.
  • Que, Y.-A.; Moreillon, P. Staphylococcus aureus (Including Staphylococcal Toxic Shock Syndrome). In Mandell, Douglas, and Bennett's Principles and Practice of Infectious Diseases. Elsevier: Philadelphia, PA, 2015.
  • PanáčEk, A.; Kvitek, L.; Prucek, R.; Kolář, M.; VečEřová, R.; Pizúrová, N.; Sharma, V. K.; NevěčNá, T. j.;.; Zbořil, R. Silver Colloid Nanoparticles: synthesis, Characterization, and Their Antibacterial Activity. J. Phys. Chem. B 2006, 110, 16248–16253.
  • Kim, M.; Jee, S.-C.; Shinde, S. K.; Mistry, B. M.; Saratale, R. G.; Saratale, G. D.; Ghodake, G. S.; Kim, D.-Y.; Sung, J.-S.; Kadam, A. A. Green-Synthesis of Anisotropic Peptone-Silver Nanoparticles and Its Potential Application as anti-Bacterial Agent. Polymers (Basel). 2019, 11, 271.
  • Samberg, M. E.; Orndorff, P. E.; Monteiro-Riviere, N. A. J. N. Antibacterial Efficacy of Silver Nanoparticles of Different Sizes, Surface Conditions and Synthesis Methods. Nanotoxicology 2011, 5, 244–253. DOI: 10.3109/17435390.2010.525669.
  • Dimiev, A. M.; Tour, J. M. Mechanism of Graphene Oxide Formation. ACS Nano 2014, 8, 3060–3068. DOI: 10.1021/nn500606a.
  • Dimiev, A. M.; Eigler, S. Mechanism of Formation and Chemical Structure of Graphene Oxide. In Graphene Oxide: Fundamentals and Applications, Chichester, West Sussex : John Wiley & Sons, Inc. 2016; pp 36–84.
  • Dimiev, A. M.; Bachilo, S. M.; Saito, R.; Tour, J. M. Reversible Formation of Ammonium Persulfate/Sulfuric Acid Graphite Intercalation Compounds and Their Peculiar Raman Spectra. ACS Nano 2012, 6, 7842–7849. DOI: 10.1021/nn3020147.
  • Dimiev, A. M.; Ceriotti, G.; Behabtu, N.; Zakhidov, D.; Pasquali, M.; Saito, R.; Tour, J. M. Direct Real-Time Monitoring of Stage Transitions in Graphite Intercalation Compounds. ACS Nano 2013, 7, 2773–2780. DOI: 10.1021/nn400207e.
  • Morin, J.; Dubey, N.; Decroix, F.; Luong-Van, E.; Neto, A. C.; Rosa, V. Graphene Transfer to 3-Dimensional Surfaces: A Vacuum-Assisted Dry Transfer Method. 2D Mater. 2017, 4, 025060. DOI: 10.1088/2053-1583/aa6530.
  • Liao, C.; Li, Y.; Tjong, S. C. Antibacterial Activities of Aliphatic Polyester Nanocomposites with Silver Nanoparticles and/or Graphene Oxide Sheets. Nanomaterials 2019, 9, 1102. DOI: 10.3390/nano9081102.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.