308
Views
16
CrossRef citations to date
0
Altmetric
Article

Fabrication and characterization of B/Sn-doped ZnO nanoparticles via mechanochemical method for photocatalytic degradation of rhodamine B

, , , , &
Pages 1369-1378 | Received 23 Jun 2020, Accepted 07 Sep 2020, Published online: 21 Oct 2020

References

  • Kumar, S.; Sharma, V.; Bhattacharyya, K.; Krishnan, V. N-Doped ZnO-MoS2 Binary Heterojunctions: Dual Role of 2D MoS2 in the Enhancement of Photostability and Photocatalytic Activity under Visible Light Irradiation for Tetracycline Degradation. Mater. Chem. Front. 2017, 1, 1093–1106. DOI: 10.1039/C6QM00274A.
  • Vignesh, S.; Suganthi, S.; Sundar, J. K.; Raj, V.; Devi, P. R. I. Highly Efficient Visible Light Photocatalytic and Antibacterial Performance of PVP Capped Cd:Ag:ZnO Photocatalyst Nanocomposites. Appl. Surf. Sci. 2019, 479, 914–929. DOI: 10.1016/j.apsusc.2019.02.064.
  • Molla, M. A. I.; Furukawa, M.; Tateishi, I.; Katsumata, H.; Kaneco, S. Fabrication of Ag-Doped ZnO by Mechanochemical Combustion Method and Their Application into Photocatalytic Famotidine Degradation. J. Environ. Sci. Health Part A 2019, 54, 914–923. DOI: 10.1080/10934529.2019.1608793.
  • Kumar, P.; Kumar, A.; Rizvi, M. A.; Moosvi, S. K.; Krishnan, V.; Duvenhage, M. M.; Roos, W. D.; Swart, H. C. Surface, Optical and Photocatalytic Properties of Rb Doped ZnO Nanoparticles. Appl. Surf. Sci. 2020, 514, 145930. DOI: 10.1016/j.apsusc.2020.145930.
  • Shanmugam, V.; Jeyaperumal, K. S. Investigations of Visible Light Driven Sn and Cu Doped ZnO Hybrid Nanoparticles for Photocatalytic Performance and Antibacterial Activity. Appl. Surf. Sci. 2018, 449, 617–630. DOI: 10.1016/j.apsusc.2017.11.167.
  • Sakib, A. A. M.; Masum, S. M.; Hoinkis, J.; Islam, R.; Molla, M. A. I. Synthesis of CuO/ZnO Nanocomposites and Their Application in Photodegradation of Toxic Textile Dye. J. Compos. Sci. 2019, 3, 91. DOI: 10.3390/jcs3030091.
  • Kumar, S.; Dhiman, A.; Sudhagar, P.; Krishnan, V. ZnO-Graphene Quantum Dots Heterojunctions for Natural Sunlight-Driven Photocatalytic Environmental Remediation. Appl. Surf. Sci. 2018, 447, 802–815. DOI: 10.1016/j.apsusc.2018.04.045.
  • Bhuvaneswari, K.; Vaitheeswari, V.; Palanisamy, G.; Maiyalagan, T.; Pazhanivel, T. Glutathione Capped Inverted Core-Shell Quantum Dots as an Efficient Photocatalyst for Degradation of Organic Dyes. Mater. Sci. Semicond. Process. 2020, 106, 104760. DOI: 10.1016/j.mssp.2019.104760.
  • Kabir, R.; Saifullah, M. A. K.; Ahmed, A. Z.; Masum, S. M.; Molla, M. A. I. Synthesis of N-Doped ZnO Nanocomposites for Sunlight Photocatalytic Degradation of Textile Dye Pollutants. J. Compos. Sci. 2020, 4, 49.
  • Kumar, S.; Kumar, A.; Kumar, A.; Krishnan, V. Nanoscale Zinc Oxide Based Heterojunctions as Visible Light Active Photocatalysts for Hydrogen Energy and Environmental Remediation. Catal. Rev. 2020, 4, 346–404. DOI: 10.3390/jcs4020049.
  • Zafar, M. N.; Dar, Q.; Nawaz, F.; Zafar, M. N.; Iqbal, M.; Nazar, M. F. Effective Adsorptive Removal of Azo Dyes over Spherical ZnO Nanoparticles. J. Mater. Res. Technol. 2019, 8, 713–725. DOI: 10.1016/j.jmrt.2018.06.002.
  • Hasnidawani, J. N.; Azlina, H. N.; Norita, H.; Bonnia, N. N.; Ratim, S.; Ali, E. S. Synthesis of ZnO Nanostructures Using Sol-Gel Method. Procedia Chem. 2016, 1, 211–216.
  • Nava Núñez, M. Y.; Martínez-de la Cruz, A. Nitric Oxide Removal by Action of ZnO Photocatalyst Hydrothermally Synthesized in Presence of EDTA. Mater. Sci. Semicond. Process. 2018, 81, 94–101. DOI: 10.1016/j.mssp.2018.03.012.
  • Kaur, J.; Bansal, S.; Singhal, S. Photocatalytic Degradation of Methyl Orange Using ZnO Nanopowders Synthesized via Thermal Decomposition of Oxalate Precursor Method. Phys. B Condens. Matter 2013, 416, 33–38. DOI: 10.1016/j.physb.2013.02.005.
  • Hjiri, M.; El Mir, L.; Leonardi, S. G.; Pistone, A.; Mavilia, L.; Neri, G. Al-Doped ZnO for Highly Sensitive CO Gas Sensors. Sens. Actuators B Chem. 2014, 196, 413–420. DOI: 10.1016/j.snb.2014.01.068.
  • Mendoza-Mendoza, E.; Nuñez-Briones, A. G.; García-Cerda, L. A.; Peralta-Rodríguez, R. D.; Montes-Luna, A. J. One-Step Synthesis of ZnO and Ag/ZnO Heterostructures and Their Photocatalytic Activity. Ceram. Int. 2018, 44, 6176–6180. DOI: 10.1016/j.ceramint.2018.01.001.
  • Lahmer, M. A. The Effect of Doping with Rare Earth Elements (Sc, Y, and La) on the Stability, Structural, Electronic and Photocatalytic Properties of the O-Terminated ZnO Surface; a First-Principles Study. Appl. Surf. Sci. 2018, 457, 315–322. DOI: 10.1016/j.apsusc.2018.06.273.
  • Li, Y.; Gao, Z.; Qin, W.; Wen, Q.; Jun, M. Nano Size Related Piezoelectric Efficiency in a Large ZnO Thin Film, Potential for Selfpowered Medical Device Application. Biochem. Anal. Biochem. 2016, 5, 2161–1009.
  • Haq, B. U.; Ahmed, R.; Shaari, A.; Ali, N.; Al-Douri, Y.; Reshak, A. Comparative Study of Fe Doped ZnO Based Diluted and Condensed Magnetic Semiconductors in Wurtzite and Zinc-Blende Structures by First-Principles Calculations. Mater. Sci. Semicond. Process. 2016, 43, 123–128. DOI: 10.1016/j.mssp.2015.12.010.
  • Qi, K.; Cheng, B.; Yu, J.; Ho, W. Review on the Improvement of the Photocatalytic and Antibacterial Activities of ZnO. J. Alloys Compd. 2017, 727, 792–820. DOI: 10.1016/j.jallcom.2017.08.142.
  • Mousavi, S. M.; Mahjoub, A. R.; Abazari, R. Facile Green Fabrication of Nanostructural Ni-Doped ZnO Hollow Sphere as an Advanced Photocatalytic Material for Dye Degradation. J. Mol. Liq. 2017, 242, 512–519. DOI: 10.1016/j.molliq.2017.07.050.
  • Turkyilmaz, S. S.; Guy, N. M. Photocatalytic Efficiencies of Ni, Mn, Fe and Ag Doped ZnO Nanostructures Synthesized by Hydrothermal Method: The Synergistic/Antagonistic Effect between ZnO and Metals. J. Photochem. Photobiol. A Chem. 2017, 341, 39–50.
  • Wang, Y.; Huang, Y.; Ho, W.; Zhang, L.; Zou, Z.; Lee, S. Biomolecule-Controlled Hydrothermal Synthesis of C-N-S-Tridoped TiO2 Nanocrystalline Photocatalysts for NO Removal under Simulated Solar Light Irradiation. J. Hazard. Mater. 2009, 169, 77–87. DOI: 10.1016/j.jhazmat.2009.03.071.
  • Kumar, S.; Maivizhikannan, V.; Drews, J.; Krishnan, V. Fabrication of Nanoheterostructures of Boron Doped ZnO-MoS2 with Enhanced Photostability and Photocatalytic Activity for Environmental Remediation Applications. Vacuum 2019, 163, 88–98. DOI: 10.1016/j.vacuum.2019.02.001.
  • Ahmad, A. A.; Alsaad, A. M.; Al-Bataineh, Q. M.; Al-Naafa, M. A. Optical and Structural Investigations of Dip-Synthesized Boron-Doped ZnO-Seeded Platforms for ZnO Nanostructures. Appl. Phys. A 2018, 124, 458. DOI: 10.1007/s00339-018-1875-z.
  • Dindar, B.; Guler, A. C. Comparison of Facile Synthesized N Doped, B Doped and Undoped ZnO for the Photocatalytic Removal of Rhodamine B. Environ. Nanotechnol. Monit. Manag. 2018, 10, 457–466.
  • Verma, N.; Bhatia, S.; Bedi, R. K. Sn-Doped ZnO Nanopetal Networks for Efficient Photocatalytic Degradation of Dye and Gas Sensing Applications. Appl. Surf. Sci. 2017, 407, 495–502.
  • Siva, N.; Sakthi, D.; Ragupathy, S.; Arun, V.; Kannadasan, N. Synthesis, Structural, Optical and Photocatalytic Behavior of Sn Doped ZnO Nanoparticles. Mater. Sci. Eng. B 2020, 253, e114497. DOI: 10.1016/j.mseb.2020.114497.
  • Priyadharsan, A.; Shanavas, S.; Vidya, C.; Sundar, J. K.; Acevedo, R.; Anbarasan, P. M. Structural and Optical Properties of Sn Doped ZnO-rGO Nanostructures Using Hydrothermal Technique. Mater. Today: Proc. 2020, 26, 3522–3525. DOI: 10.1016/j.matpr.2019.05.440.
  • Molla, M. A. I.; Furukawa, M.; Tateishi, I.; Katsumata, H.; Kaneco, S. Studies of Effects of Calcination Temperature on the Crystallinity and Optical Properties of Ag–Doped ZnO Nanocomposites. J. Compos. Sci. 2019, 3, 18. DOI: 10.3390/jcs3010018.
  • Lamba, R.; Umar, A.; Mehta, S. K.; Kansal, S. K. Sb2O3–ZnO Nanospindles: A Potential Material for Photocatalytic and Sensing Applications. Ceram. Int. 2015, 41, 5429–5438. DOI: 10.1016/j.ceramint.2014.12.109.
  • Hassan Farooq, M.; Hussain, R.; Iqbal, M. Z.; Shah, M. W.; Rana, U. A.; Khan, S. U.-D. Fabrication and Magnetic Properties of Sn-Doped ZnO Microstructures via Hydrothermal Method. J. Nanosci. Nanotechnol. 2016, 16, 898–902. DOI: 10.1166/jnn.2016.10705.
  • Willamson, G. K.; Hall, W. H. X–Ray Line Broadening from Filed Aluminium and Wolfram. Acta Metall. 1953, 1, 22–31.
  • Khan, S. A.; Noreen, F.; Kanwal, S.; Iqbal, A.; Hussain, G. Green Synthesis of ZnO and Cu-Doped ZnO Nanoparticles from Leaf Extracts of Abutilon indicum, Clerodendrum infortunatum, Clerodendrum inerme and Investigation of Their Biological and Photocatalytic Activities. Mater. Sci. Eng. C 2018, 82, 46–59. DOI: 10.1016/j.msec.2017.08.071.
  • He, F.; He, Z.; Xie, J.; Li, Y. IR and Raman Spectra Properties of Bi2O3-ZnO-B2O3-BaO Quaternary Glass System. AJAC. 2014, 05, 1142–1150. DOI: 10.4236/ajac.2014.516121.
  • Ma, G.; Liang, X.; Li, L.; Qiao, R.; Jiang, D.; Ding, Y.; Chen, H. Cu-Doped Zinc Oxide and Its Polythiophene Composites: Preparation and Antibacterial Properties. Chemosphere 2014, 100, 146–151. DOI: 10.1016/j.chemosphere.2013.11.053.
  • Sing, K. S. W.; Everett, D. H.; Haul, R. A. W.; Moscou, L.; Pierotti, R. A.; Rouquerol, J.; Siemieniewsk, T. Reporting Physisorption Data for Gas/Solid Systems–With Special Reference to the Determination of Surface Area and Porosity. Pure Appl. Chem. 1985, 57, 603–619. [Database] DOI: 10.1351/pac198557040603.
  • Xu, X. G.; Yang, H. L.; Wu, Y.; Zhang, D. L.; Wu, S. Z.; Miao, J.; Jiang, Y.; Qin, X. B.; Cao, X. Z.; Wang, B. Y. Intrinsic Room Temperature Ferromagnetism in Boron-Doped ZnO. Appl. Phys. Lett. 2010, 97, 232502–232504. DOI: 10.1063/1.3524493.
  • Ju, D.-X.; Xu, H.-Y.; Qiu, Z.-W.; Zhang, Z.-C.; Xu, Q.; Zhang, J.; Wang, J.-Q.; Cao, B.-Q. Near Room Temperature, Fast-Response, and Highly Sensitive Triethylamine Sensor Assembled with Au-Loaded ZnO/SnO2 Core–Shell Nanorods on Flat Alumina Substrates. ACS Appl. Mater. Interfaces 2015, 7, 19163–19171. DOI: 10.1021/acsami.5b04904.
  • Nasir, M.; Lei, J.; Iqbal, W.; Zhang, J. Study of Synergistic Effect of Sc and C Co-Doping on the Enhancement of Visible Light Photo-Catalytic Activity of TiO2. Appl. Surf. Sci. 2016, 364, 446–454. DOI: 10.1016/j.apsusc.2015.12.166.
  • Yu, W.; Zhang, J.; Peng, T. New Insight into the Enhanced Photocatalytic Activity of N-, C- and S-Doped ZnO Photocatalysts. Appl. Catal. B Environ. 2016, 181, 220–227. DOI: 10.1016/j.apcatb.2015.07.031.
  • Sudrajat, H.; Babel, S.; Thushari, I.; Laohhasurayotin, K. Stability of La Dopants in NaTaO3 Photocatalysts. J. Alloys Compd. 2019, 775, 1277–1285. DOI: 10.1016/j.jallcom.2018.10.237.
  • Kumar, S.; Sharma, V.; Bhattacharyya, K.; Krishnan, V. Synergetic Effect of MoS2-RGO Doping to Enhance the Photocatalytic Performance of ZnO Nanoparticles. New J. Chem. 2016, 40, 5185–5197. DOI: 10.1039/C5NJ03595C.
  • Truc, N. T. T.; Duc, D. S.; Thuan, D. V.; Tahtamouni, T. A.; Pham, T. D.; Hanh, N. T.; Tran, D. T.; Nguyen, M. V.; Dang, N. M.; Chi, N. T. P. L.; Nguyen Van, N. The Advanced Photocatalytic Degradation of Atrazine by Direct z-Scheme Cu Doped ZnO/g-C3N4. Appl. Surf. Sci. 2019, 489, 875–882. DOI: 10.1016/j.apsusc.2019.05.360.
  • Molla, M. A. I.; Furukawa, M.; Tateishi, I.; Katsumata, H.; Suzuki, T.; Kaneco, S. Photocatalytic Decolorization of Dye with Self–Dye–Sensitization under Fluorescent Light Irradiation. ChemEngineering 2017, 1, 8. DOI: 10.3390/chemengineering1020008.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.