484
Views
8
CrossRef citations to date
0
Altmetric
Article

Facile, controllable, chemical reduction synthesis of copper nanostructures utilizing different capping agents

, , & ORCID Icon
Pages 1418-1430 | Received 22 May 2020, Accepted 07 Sep 2020, Published online: 27 Oct 2020

References

  • Sobeih, M. M.; El-Shahat, M. F.; Osman, A.; Zaid, M. A.; Nassar, M. Y. Glauconite Clay-Functionalized Chitosan Nanocomposites for Efficient Adsorptive Removal of Fluoride Ions from Polluted Aqueous Solutions. RSC Adv. 2020, 10, 25567–25585. DOI: 10.1039/D0RA02340J.
  • Abdel-Bary, A. S.; Tolan, D. A.; Nassar, M. Y.; Taketsugu, T.; El-Nahas, A. M. Chitosan, Magnetite, Silicon Dioxide, and Graphene Oxide Nanocomposites: Synthesis, Characterization, Efficiency as Cisplatin Drug Delivery, and DFT Calculations. Int. J. Biol. Macromol. 2020, 154, 621–633. DOI: 10.1016/j.ijbiomac.2020.03.106.
  • Ali, I. M.; Nassar, M. Y.; Kotp, Y. H.; Khalil, M. Cylindrical-Design, Dehydration, and Sorption Properties of Easily Synthesized Magnesium Phosphosilicate Nanopowder. Part. Sci. Technol. 2019, 37, 207–219. DOI: 10.1080/02726351.2017.1362607.
  • Nassar, M. Y.; El-Moety, E. A.; El-Shahat, M. F. Synthesis and Characterization of a ZnMn2O4 Nanostructure as a Chemical Nanosensor: A Facile and New Approach for Colorimetric Determination of Omeprazole and Lansoprazole Drugs. RSC Adv. 2017, 7, 43798–43811. DOI: 10.1039/C7RA08010G.
  • Nassar, M. Y.; Moustafa, M. M.; Taha, M. M. Hydrothermal Tuning of the Morphology and Particle Size of Hydrozincite Nanoparticles Using Different Counterions to Produce Nanosized ZnO as an Efficient Adsorbent for Textile Dye Removal. RSC Adv. 2016, 6, 42180–42195. DOI: 10.1039/C6RA04855B.
  • Barkat, A.; Beg, S.; Panda, S. K.; Alharbi, K. S.; Rahman, M.; Ahmed, F. J. Functionalized Mesoporous Silica Nanoparticles in Anticancer Therapeutics. Semin. Cancer Biol. 2019, In Press. DOI: 10.1016/j.semcancer.2019.08.022.
  • Rastogi, A.; Tripathi, D. K.; Yadav, S.; Chauhan, D. K.; Živčák, M.; Ghorbanpour, M.; El-Sheery, N. I.; Brestic, M. Application of Silicon Nanoparticles in Agriculture. 3 Biotech. 2019, 9, 90. DOI: 10.1007/s13205-019-1626-7.
  • Perumal, A. B.; Nambiar, R. B.; Sellamuthu, P. S.; Sadiku, E. R. Application of Biosynthesized Nanoparticles in Food, Food Packaging and Dairy Industries. In Biological Synthesis of Nanoparticles and Their Applications; Karthik, L., Vishnu Kirthi, A., Ranjan, S., Mohana Srinivasan, V., Eds.; CRC Press: Boca Raton, FL, 2020; p 145.
  • Ojha, N. K.; Zyryanov, G. V.; Majee, A.; Charushin, V. N.; Chupakhin, O. N.; Santra, S. Copper Nanoparticles as Inexpensive and Efficient Catalyst: A Valuable Contribution in Organic Synthesis. Coord. Chem. Rev. 2017, 353, 1–57. DOI: 10.1016/j.ccr.2017.10.004.
  • Akturk, A.; Güler, F. K.; Taygun, M. E.; Goller, G.; Küçükbayrak, S. Synthesis and Antifungal Activity of Soluble Starch and Sodium Alginate Capped Copper Nanoparticles. Mater. Res. Express 2020, 6, 1250g3. DOI: 10.1088/2053-1591/ab677e.
  • Kavinkumar, T.; Varunkumar, K.; Ravikumar, V.; Manivannan, S. Anticancer Activity of Graphene Oxide-Reduced Graphene Oxide-Silver Nanoparticle Composites. J. Colloid Interface Sci. 2017, 505, 1125–1133. DOI: 10.1016/j.jcis.2017.07.002.
  • Khan, Z. U. H.; Khan, A.; Chen, Y.; Shah, N. S.; Muhammad, N.; Khan, A. U.; Tahir, K.; Khan, F. U.; Murtaza, B.; Hassan, S. U.; et al. Biomedical Applications of Green Synthesized Nobel Metal Nanoparticles. J. Photochem. Photobiol. B. 2017, 173, 150–164. DOI: 10.1016/j.jphotobiol.2017.05.034.
  • Astruc, D. Nanoparticles and Catalysis; Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2008.
  • El-Berry, M. F.;Sadeek, S. A.;Abdalla, A. M.;Nassar, M. Y. Microwave-Assisted Fabrication of Copper Nanoparticles Utilizing Different Counter Ions: An Efficient Photocatalyst for Photocatalytic Degradation of Safranin Dye from Aqueous Media. Mater. Res. Bull. 2021, 133, 111048.DOI:10.1016/j.materresbull.2020.111048.
  • Tien, H.-W.; Huang, Y.-L.; Yang, S.-Y.; Wang, J.-Y.; Ma, C.-C. M. The Production of Graphene Nanosheets Decorated with Silver Nanoparticles for Use in Transparent, Conductive Films. Carbon 2011, 49, 1550–1560. DOI: 10.1016/j.carbon.2010.12.022.
  • Pradeep Anshup, T. Noble Metal Nanoparticles for Water Purification: A Critical Review. Thin Solid Films 2009, 517, 6441–6478. DOI: 10.1016/j.tsf.2009.03.195.
  • Gawande, M. B.; Goswami, A.; Felpin, F.-X.; Asefa, T.; Huang, X.; Silva, R.; Zou, X.; Zboril, R.; Varma, R. S. Cu and Cu-Based Nanoparticles: Synthesis and Applications in Catalysis. Chem. Rev. 2016, 116, 3722–3811. DOI: 10.1021/acs.chemrev.5b00482.
  • Sreeju, N.; Rufus, A.; Philip, D. Microwave-Assisted Rapid Synthesis of Copper Nanoparticles with Exceptional Stability and Their Multifaceted Applications. J. Mol. Liq. 2016, 221, 1008–1021. DOI: 10.1016/j.molliq.2016.06.080.
  • Kokorekin, V.; Gamayunova, A.; Yanilkin, V.; Petrosyan, V. Mediated Electrochemical Synthesis of Copper Nanoparticles in Solution. Russ. Chem. Bull. 2017, 66, 2035–2043. DOI: 10.1007/s11172-017-1978-2.
  • Reverberi, A. P.; Salerno, M.; Lauciello, S.; Fabiano, B. Synthesis of Copper Nanoparticles in Ethylene Glycol by Chemical Reduction with Vanadium (+2) Salts. Materials 2016, 9, 809. DOI: 10.3390/ma9100809.
  • Mdlovu, N. V.; Chiang, C.-L.; Lin, K.-S.; Jeng, R.-C. Recycling Copper Nanoparticles from Printed Circuit Board Waste Etchants via a Microemulsion Process. J. Cleaner Prod. 2018, 185, 781–796. DOI: 10.1016/j.jclepro.2018.03.087.
  • Sadanand, V.; Feng, T. H.; Rajulu, A. V.; Satyanarayana, B. Preparation and Properties of Low-Cost Cotton Nanocomposite Fabrics with In Situ-Generated Copper Nanoparticles by Simple Hydrothermal Method. Int. J. Polym. Anal. Charact. 2017, 22, 587–594. DOI: 10.1080/1023666X.2017.1344916.
  • Abbasi-Kesbi, F.; Rashidi, A. M.; Astinchap, B. Preparation of Ultrafine Grained Copper Nanoparticles via Immersion Deposit Method. Appl. Nanosci. 2018, 8, 221–230. DOI: 10.1007/s13204-018-0646-7.
  • Karthik, A. D.; Geetha, K. Synthesis of Copper Precursor, Copper and Its Oxide Nanoparticles by Green Chemical Reduction Method and Its Antimicrobial Activity. J. Appl. Pharm. Sci. 2013, 3, 16.
  • Umer, A.; Naveed, S.; Ramzan, N.; Rafique, M. S. Selection of a Suitable Method for the Synthesis of Copper Nanoparticles. Nano. 2012, 07, 1230005. DOI: 10.1142/S1793292012300058.
  • Tsai, C.-Y.; Chang, W.-C.; Chen, G.-L.; Chung, C.-H.; Liang, J.-X.; Ma, W.-Y.; Yang, T.-N. A Study of the Preparation and Properties of Antioxidative Copper Inks with High Electrical Conductivity. Nanoscale Res. Lett. 2015, 10, 357. DOI: 10.1186/s11671-015-1069-y.
  • Xu, Q.; Li, X.; Zhang, Z. Preparation of Copper Nanoparticle-Improved Polyamide 6 Composites by an In Situ Solution Route with Cupric Oxide as the Metallic Copper Source and Investigation of Their Properties. New J. Chem. 2015, 39, 3015–3020. DOI: 10.1039/C4NJ02302A.
  • Lanbo, D.; Xiuling, Z.; Zhijian, X. Preparation of Copper Nanoparticles Using Dielectric Barrier Discharge at Atmospheric Pressure and Its Mechanism. Plasma Sci. Technol. 2014, 16, 41–44. DOI: 10.1088/1009-0630/16/1/09.
  • Bahadory, M. Synthesis of Noble Metal Nanoparticles; Drexel University: Philadelphia, PA, 2008.
  • Hokita, Y.; Kanzaki, M.; Sugiyama, T.; Arakawa, R.; Kawasaki, H. High-Concentration Synthesis of Sub-10-nm Copper Nanoparticles for Application to Conductive Nanoinks. ACS Appl. Mater. Interfaces 2015, 7, 19382–19389. DOI: 10.1021/acsami.5b05542.
  • Cheng, X.; Zhang, X.; Yin, H.; Wang, A.; Xu, Y. Modifier Effects on Chemical Reduction Synthesis of Nanostructured Copper. Appl. Surf. Sci. 2006, 253, 2727–2732. DOI: 10.1016/j.apsusc.2006.05.125.
  • Zhou, L.; Wang, S.; Ma, H.; Ma, S.; Xu, D.; Guo, Y. Size-Controlled Synthesis of Copper Nanoparticles in Supercritical Water. Chem. Eng. Res. Des. 2015, 98, 36–43. DOI: 10.1016/j.cherd.2015.04.004.
  • Alzahrani, E.; Ahmed, R. A. Synthesis of Copper Nanoparticles with Various Sizes and Shapes: application as a Superior Non-Enzymatic Sensor and Antibacterial Agent. Int. J. Electrochem. Sci. 2016, 11, 4712–4723., DOI: 10.20964/2016.06.83.
  • Bambo, M. F.; Krause, R. W. M.; Moutloali, R. M. Facile Method for the Synthesis of Copper Nanoparticles Supported on the Organoclay Material. J. Biomat. Nanobiotech. 2017, 08, 144–158. DOI: 10.4236/jbnb.2017.82010.
  • Kumar, N.; Upadhyay, L. S. B. Facile and Green Synthesis of Highly Stable l-Cysteine Functionalized Copper Nanoparticles. Appl. Surf. Sci. 2016, 385, 225–233. DOI: 10.1016/j.apsusc.2016.05.125.
  • Tan, K. S.; Cheong, K. Y. Advances of Ag, Cu, and Ag–Cu Alloy Nanoparticles Synthesized via Chemical Reduction Route. J. Nanopart. Res. 2013, 15, 1537. DOI: 10.1007/s11051-013-1537-1.
  • Chang, S.; Tung, C.; Chen, B.; Chou, Y.; Li, C. Synthesis of Non-Oxidative Copper Nanoparticles. RSC Adv. 2013, 3, 24005–24008. DOI: 10.1039/c3ra44768e.
  • Phan, C. M.; Nguyen, H. M. Role of Capping Agent in Wet Synthesis of Nanoparticles. J. Phys. Chem. A. 2017, 121, 3213–3219. DOI: 10.1021/acs.jpca.7b02186.
  • Zhang, Q.-L.; Yang, Z.-M.; Ding, B.-J.; Lan, X.-Z.; Guo, Y.-J. Preparation of Copper Nanoparticles by Chemical Reduction Method Using Potassium Borohydride. Trans. Nonferrous Metals Soc. China 2010, 20, s240–s244. DOI: 10.1016/S1003-6326(10)60047-7.
  • Dang, T. M. D.; Le, T. T. T.; Fribourg-Blanc, E.; Dang, M. C. The Influence of Solvents and Surfactants on the Preparation of Copper Nanoparticles by a Chemical Reduction Method. Adv. Nat. Sci: Nanosci. Nanotechnol. 2011, 2, 025004. DOI: 10.1088/2043-6262/2/2/025004.
  • Zhu, H-t.; Lin, Y-s.; Yin, Y-s. A Novel One-Step Chemical Method for Preparation of Copper Nanofluids. J. Colloid Interface Sci. 2004, 277, 100–103. DOI: 10.1016/j.jcis.2004.04.026.
  • Lai, D.; Liu, T.; Jiang, G.; Chen, W. Synthesis of Highly Stable Dispersions of Copper Nanoparticles Using Sodium Hypophosphite. J. Appl. Polym. Sci. 2012, 128, n/a–1449. DOI: 10.1002/app.38109.
  • Yu, W.; Xie, H.; Chen, L.; Li, Y.; Zhang, C. Synthesis and Characterization of Monodispersed Copper Colloids in Polar Solvents. Nanoscale Res. Lett. 2009, 4, 465–470. DOI: 10.1007/s11671-009-9264-3.
  • Teichert, J.; Doert, T.; Ruck, M. Mechanisms of the Polyol Reduction of copper(ii) salts depending on the anion type and diol chain length. Dalton Trans. 2018, 47, 14085–14093. DOI: 10.1039/c8dt03034k.
  • Greenwood, N.; Earnshaw, A. Chemistry of the Elements, 2nd ed.; Butterworth-Heinemann: Amsterdam, 1997.
  • Lee, Y.; Choi, J-R.; Lee, K. J.; Stott, N. E.; Kim, D. Large-Scale Synthesis of Copper Nanoparticles by Chemically Controlled Reduction for Applications of Inkjet-Printed Electronics. Nanotechnology 2008, 19, 415604. DOI: 10.1088/0957-4484/19/41/415604.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.