395
Views
2
CrossRef citations to date
0
Altmetric
Article

Synthesis, growth mechanism and photocatalytic properties of nickel oxide (NiO) nanoflower: a hydrothermal process

, , &
Pages 1431-1441 | Received 26 May 2020, Accepted 07 Sep 2020, Published online: 27 Oct 2020

References

  • Vidotti, M.; Greco, C. V.; Ponzio, E. A.; Torresi, S. I. C. Sonochemically Synthesized Ni(OH)2 and Co(OH)2 Nanoparticles and Their Application in Electrochromic Electrodes. Electrochem. Commun. 2006, 8, 554–560. DOI: 10.1016/j.elecom.2006.01.024.
  • Zhou, D.; Yan, A.; Wu, Y.; Wu, T. A Facile Synthetic Route to Flower- like NiO and Its Catalytic Properties. Indian J. Chem. Sec. A 2013, 52, 51–56.
  • Hotovy, I.; Huran, J.; Spiess, L.; Hascik, S.; Rehacek, V. Preparation of Nickel Oxide Thin Films for Gas Sensors Applications. Sens. Actuators 1999, 57, 147–152. DOI: 10.1016/S0925-4005(99)00077-5.
  • Hotovy, I.; Rehacek, V.; Siciliano, P.; Capone, S.; Spiess, L. Sensing Characteristics of NiO Thin Films as NO2 Gas Sensor. Thin Solid Films 2002, 418, 9–15. DOI: 10.1016/S0040-6090(02)00579-5.
  • Nguyen, D. H.; El-Safty, S. A. Synthesis of Mesoporous NiO Nanosheets for the Detection of Toxic NO2 Gas. Chemistry 2011, 17, 12896–12901. DOI: 10.1002/chem.201101122.
  • Wei, T. Y.; Chen, C. H.; Chien, H. C.; Lu, S. Y.; Hu, C. C. A Cost Effective Supercapacitor Material of Ultrahigh Specific Capacitances: Spinel Nickel Cobaltite Aerogels from an Epoxide-Driven Sol − Gel Process. Adv. Mater. 2010, 22, 347–351. DOI: 10.1002/adma.200902175.
  • Wang, D. W.; Li, F.; Cheng, H. M. Hierarchical Porous Nickel Oxide and Carbon as Electrode Materials for Asymmetric Supercapacitor. J. Power Sources 2008, 185, 1563–1568. DOI: 10.1016/j.jpowsour.2008.08.032.
  • Fominykh, K.; Feckl, J. M.; Sicklinger, J.; Döblinger, M.; Böcklein, S.; Ziegler, J.; Peter, L.; Rathousky, J.; Scheidt, E. W.; Bein, T.; Fattakhova-Rohlfing, D. Ultrasmall Dispersible Crystalline Nickel Oxide Nanoparticles as High-Performance Catalysts for Electrochemical Water Splitting. Adv. Funct. Mater. 2014, 24, 3123–3129. DOI: 10.1002/adfm.201303600.
  • Zhang, F. B.; Zhou, Y. K.; Li, H. L. Nanocrystalline NiO as an Electrode Material for Electrochemical Capacitor. Mater. Chem. Phys. 2004, 83, 260–264. DOI: 10.1016/j.matchemphys.2003.09.046.
  • Zhao, B.; Ke, X. K.; Bao, J. H.; Wang, C. L.; Dong, L.; Chen, Y. W.; Chen, H. L. Synthesis of Flower-Like NiO and Effects of Morphology on Its Catalytic Properties. J. Phys. Chem. C. 2009, 113, 14440–14447. DOI: 10.1021/jp904186k.
  • Kim, T. W.; Hwang, S. J.; Jhung, S. H.; Chang, J. S.; Park, H.; Choi, W.; Choy, J. H. Bifunctional Heterogeneous Catalysts for Selective Epoxidation and Visible Light Driven Photolysis: Nickel Oxide Containing Porous Nanocomposite. Adv. Mater. 2008, 20, 539–542. DOI: 10.1002/adma.200701677.
  • Liu, H.; Wang, G.; Liu, J.; Qiao, S.; Ahn, H. Highly Ordered Mesoporous NiO Anode Material for Lithium Ion Batteries with an Excellent Electrochemical Performance. J. Mater. Chem. 2011, 21, 3046–3052. DOI: 10.1039/c0jm03132a.
  • Wang, X.; Yang, Z.; Sun, X.; Li, X.; Wang, D.; Wang, P.; He, D. NiO Nanocone Array Electrode with High Capacity and Rate Capability for Li-Ion Batteries. J. Mater. Chem. 2011, 21, 9988–9990. DOI: 10.1039/c1jm11490e.
  • Gillaspie, D. T.; Tenent, R. C.; Dillon, A. C. Metal-Oxide Films for Electrochromic Applications: Present Technology and Future Directions. J. Mater. Chem. 2010, 20, 9585–9592. DOI: 10.1039/c0jm00604a.
  • Svensson, J. S. E. M.; Granqvist, C. G. Electrochromic Hydrated Nickel Oxide Coatings for Energy Efficient Windows: Optical Properties and Coloration Mechanism. Appl. Phys. Lett. 1986, 49, 1566–1568. DOI: 10.1063/1.97281.
  • Yuan, Y. F.; Xia, X. H.; Wu, J. B.; Chen, Y. B.; Yang, J. L.; Guo, S. Y. Enhanced Electrochromic Properties of Ordered Porous Nickel Oxide Thin Film Prepared by Self-Assembled Colloidal Crystal Template-Assisted Electrodeposition. Electrochim. Acta 2011, 56, 1208–1212. DOI: 10.1016/j.electacta.2010.10.097.
  • Davar, F.; Fereshteh, Z.; Salavati-Niasari, M. Nanoparticle Ni and NiO: Synthesis, Characterization and Magnetic Properties. J. Alloys Comp. 2009, 476, 797–801. DOI: 10.1016/j.jallcom.2008.09.121.
  • Rueckes, T.; Kim, K.; Joselevich, E.; Tseng, G. Y.; Cheung, C. L.; Lieber, C. M. Carbon Nanotube-Based Nonvolatile Random Access Memory for Molecular Computing. Science 2000, 289, 94. DOI: 10.1126/science.289.5476.94.
  • Cui, Y.; Lieber, C. M. Functional Nanoscale Electronic Devices Assembled Using Silicon Nanowire Building Blocks. Science 2001, 291, 851. DOI: 10.1126/science.291.5505.851.
  • Klimov, V. I. Spectral and Dynamical Properties of Multiexcitons in Semiconductor Nanocrystals. Annu. Rev. Phys. Chem. 2007, 58, 635–673. DOI: 10.1146/annurev.physchem.58.032806.104537.
  • Li, L.; Hu, J.; Yang, W.; Alivisatos, A. P. Band Gap Variation of Size- and Shape-Controlled Colloidal CdSe Quantum Rods. Nano Lett. 2001, 1, 349–351. DOI: 10.1021/nl015559r.
  • Sa, J.; Kayser, Y.; Milne, C. J.; Fernandes, D. L. A.; Szlachetko, J. Temperature-Programmed Reduction of NiO Nanoparticles Followed by Timeresolved RIXS. Phys. Chem. Chem. Phys. 2014, 16, 7692–7696.
  • Bita, I.; Yang, J. K. W.; Jung, Y. S.; Ross, C. A.; Thomas, E. L.; Berggren, K. K. Graphoepitaxy of Self-Assembled Block Copolymers on Two-Dimensional Periodic Patterned Templates. Science 2008, 321, 939. DOI: 10.1126/science.1159352.
  • Cheng, J. J.; Mayes, A. M.; Ross, C. A. Nanostructure Engineering by Template Self-Assembly of Block Copolymers. Nat. Mater. 2004, 3, 823–828. DOI: 10.1038/nmat1211.
  • CöLfen, H.; Mann, S. Higher-Order Organization by Mesoscale Self-Assembly and Transformation of Hybrid Nanostructures. Angew. Chem., Int. Ed. 2003, 42, 2350.
  • Zhu, Z.; Wei, N.; Liu, H.; He, Z. Microwave-Assisted Hydrothermal Synthesis of Ni (OH)2 Architectures and Their in Situ Thermal Convention to NiO. Adv. Powder Technol. 2011, 22, 422–426. DOI: 10.1016/j.apt.2010.06.008.
  • Wang, L.; Zhao, Y.; Lai, Q.; Hao, Y. Preparation of 3D Roselike NiO Complex Structure and Its Electrochemical Property. J. Alloys Comp. 2010, 495, 82–87. DOI: 10.1016/j.jallcom.2010.01.091.
  • Meher, S. K.; Justin, P.; Rao, R. Microwave-Mediated Synthesis for Improved Morphology and Pseudocapacitance Performance of Nickel Oxide. ACS Appl. Mater. Interfaces. 2011, 3, 2063–2073. DOI: 10.1021/am200294k.
  • Shende, P.; Kasture, P.; Gaud, R. S. Nanoflowers: The Future Trend of Nanotechnology for Multi-Applications. J. Artificial Cells, Nanomed. Biotechnol. 2018, 46, 413–422.
  • Li, M.; Schnablegger, H.; Mann, S. Coupled Synthesis and Self-Assembly of Nanoparticles to Give Structures with Controlled Organization. Nature 1999, 402, 393–395. DOI: 10.1038/46509.
  • Kwan, S.; Kim, F.; Akana, J.; Yang, P. Synthesis and Assembly of BaWO4 Nanorods. Chem. Commun. 2001, 5, 447–448.
  • Lao, J. Y.; Wen, J. G.; Ren, Z. F. Hierarchical ZnO Nanostructures. Nano Lett. 2002, 2, 1287–1291. DOI: 10.1021/nl025753t.
  • Shi, H.; Qi, L.; Ma, J.; Cheng, H. H. Polymer-Directed Synthesis of Penniform BaWO4 Nanostructures in Reverse Micelles. J. Am. Chem. Soc. 2003, 125, 3450. DOI: 10.1021/ja029958f.
  • Mohamed, W. S.; Abu-Dief, A. M. Impact of Rare Earth Europium (RE-Eu3+) Ions Substitution on Microstructural, Optical and Magnetic Properties of CoFe2−xEuxO4 Nanosystems. Ceram. Int. 2020, 46, 16196–16209. DOI: 10.1016/j.ceramint.2020.03.175.
  • Mohamed, W. S.; Alzaid, M.; Abdelbaky, M. S. M.; Amghouz, Z.; García-Granda, S.; Abu-Dief, A. M. Impact of Co2+ Substitution on Microstructure and Magnetic Properties of CoxZn1−xFe2O4 Nanoparticles. Nanomaterials 2019, 9, 1602.
  • Baker, M. A.; Hamid, M. A. A. Transformation Nanostructured Nickel Hydroxide to Nickel Oxide Film by Aqueous Chemical Growth. AIP Conf. Proc. 2013, 1528, 359–364.
  • Williamson, G. K.; Hall, W. H. X-Ray Line Broadening from Filed Aluminium and Wolfram. Acta Metall. 1953, 1, 22–31. DOI: 10.1016/0001-6160(53)90006-6.
  • Mote, V. D.; Purushotham, Y.; Dole, B. N. Williamson-Hall Analysis in Estimation of Lattice Strain in Nanometer-Sized ZnO Particles. J. Theor. Appl. Phys. 2012, 6, 6–8. DOI: 10.1186/2251-7235-6-6.
  • Cullity, B. D. Elements of X-Ray Diffraction; Addison-Wesley Publishing Company Inc.: California, 1956.
  • Zak, A. K.; Abd. Majid, W. H.; Abrishami, M. E.; Yousefi, R. X. Ray Analysis of ZnO Nanoparticles by Williamson-Hall and Size-Strain Plot Methods. Solid State Sci. 2011, 13, 251–256. DOI: 10.1016/j.solidstatesciences.2010.11.024.
  • Yahmadi, B.; Kamoun, N.; Guasch, C.; Bennaceur, R. Synthesis and Characterization of Nanocrystallined In2S3 Thin Films via CBD Technique. Mater. Chem. Phys. 2011, 127, 239–247. DOI: 10.1016/j.matchemphys.2011.01.066.
  • Deabate, S.; Fourgeot, F.; Henn, F. Henn. F. X-Ray Diffraction and Micro-Raman Spectroscopy Analysis of New Nickel Hydroxide Obtained by Electrodialysis. J. Power Sources 2000, 87, 125–136. DOI: 10.1016/S0378-7753(99)00437-1.
  • Kiran, N. P.; Deshpande, M. P.; Krishna, C.; Piyush, R.; Vasant, S.; Swati, P.; Chaki, S. H. Synthesis, Structural and Photoluminescence Properties of Nanocrystalline Cu Doped NiO. Mater. Res. Express 2017, 4, 105027. DOI: 10.1088/2053-1591/aa90ad.
  • Ravikumar, P.; Kisan, B.; Perumal, A. Enhanced Room Temperature Ferromagnetism in Antiferromagnetic NiO Nanoparticles. AIP Adv. 2015, 5, 87116. DOI: 10.1063/1.4928426.
  • Liu, S.; Jia, J.; Wang, J.; Liu, S.; Wang, X.; Song, H.; Hu, X. Synthesis of Fe-Doped NiO Nanofibers Using Electrospinning Method and Their Ferromagnetic Properties. J. Magn. Magn. Mater. 2012, 324, 2070–2074. DOI: 10.1016/j.jmmm.2012.02.017.
  • Mironova-Ulmane, N.; Kuzmin, A.; Grabis, J.; Sildos, I.; Voronin, V. I.; Berger, I. F.; Kazantsev, V. A. Structural and Magnetic Properties of Nickel Oxide Nanopowders. SSP. 2010, 168-169, 341–344. DOI: 10.4028/www.scientific.net/SSP.168-169.341.
  • Thema, F. T.; Manikandan, E.; Gurib-Fakim, A.; Maaza, M. Single Phase Bunsenite NiO Nanoparticles Green Synthesis by Agathosma Betulina Natural Extract. J. Alloys Compounds 2016, 657, 655–661. DOI: 10.1016/j.jallcom.2015.09.227.
  • Amor, M. B.; Boukhachem, A.; Labidi, A.; Boubaker, K.; Amlouk, M. Physical Nvestigations on Cd Doped NiO Thin Films along with Ethanol Sensing at Relatively Low Temperature. J. Alloys Compounds 2017, 693, 490–499. DOI: 10.1016/j.jallcom.2016.09.207.
  • Tauc, J. Optical Properties and Electronic Structure of Amorphous Ge and Si. Mater. Res. Bull. 1968, 3, 37–46. DOI: 10.1016/0025-5408(68)90023-8.
  • Xia, B.; Lenggoro, I. W.; Okuyama, K. The Roles of Ammonia and Ammonium Bicarbonate in the Preparation of Nickel Particles from Nickel Chloride. J. Mater. Res. 2000, 15, 2157–2166. DOI: 10.1557/JMR.2000.0311.
  • Yang, Y.; Liang, Y.; Zhang, Z.; Zhang, Y.; Wu, H.; Hu, Z. Morphology Well-Controlled Synthesis of NiO by Solvothermal Reaction Time and Their Morphology-Dependent Pseudocapacitive. J. Alloy. Compd. 2016, 658, 621–628. DOI: 10.1016/j.jallcom.2015.10.253.
  • Dodd, A. C.; McKinley, A. J.; Saunders, M.; Tsuzuki, T. Effect of Particle Size on the Photocatalytic Activity of Nanoparticulate Zinc Oxide. J. Nanopart. Res. 2006, 8, 43–51. DOI: 10.1007/s11051-005-5131-z.
  • Mohamed, W. S.; Abu-Dief, A. M. Synthesis, Characterization and Photocatalysis Enhancement of Eu2O3-ZnO Mixed Oxide Nanoparticles. J. Phys. Chem. Solids 2018, 116, 375–385. DOI: 10.1016/j.jpcs.2018.02.008.
  • Othman, A. A.; Osman, M. A.; Ali, M. A.; Mohamed, W. S.; Ibrahim, E. M. M. Sonochemically Synthesized Ni-Doped ZnS Nanoparticles: structural, Optical and Photocatalytic Properties. J. Mater. Sci. Mater. Electron. 2020, 31, 1752–1767.
  • Daneshvar, N.; Behnajady, M. A.; Asghar, Y. Z. Photooxidative Degradation of 4-Nitrophenol (4-NP) in UV/H2O2 Process: Influence of Operational Parameters and Reaction Mechanism. J. Hazard. Mater. 2007, 139, 275–279. DOI: 10.1016/j.jhazmat.2006.06.045.
  • Baruah, S.; Dutta, J. Nanotechnology Applications in Pollution Sensing and Degradation in Agriculture: A Review. Environ. Chem. Lett. 2009, 7, 191–204. DOI: 10.1007/s10311-009-0228-8.
  • Tian, H.; Fan, H.; Dong, G.; Ma, L.; Ma, J. NiO/ZnO p–n Heterostructures and Gas Sensing Properties for Reduced Operating Temperature. RSC Adv. 2016, 6, 109091–109098. DOI: 10.1039/C6RA19520B.
  • Irwin, M. D.; Buchholz, D. B.; Hains, A. W.; Chang, R. P.; Marks, T. J. p-Type Semiconducting Nickel Oxide as an Efficiency-Enhancing Anode Interfacial Layer in Polymer Bulk- Heterojunction Solar Cells. Proceedings of the National Academy of Sciences, 2008, 105, 2783–2787.
  • Kumar, S.; Reddy, N. L.; Kushwaha, H. S.; Kumar, A.; Shankar, M. V.; Bhattacharyya, K.; Halder, A.; Krishnan, V. Efficient Electron Transfer across a ZnO-MoS2 -Reduced Graphene Oxide Heterojunction for Enhanced Sunlight-Driven Photocatalytic Hydrogen Evolution. ChemSusChem 2017, 10, 3588–3603. DOI: 10.1002/cssc.201701024.
  • Natu, G.; Hasin, P.; Huang, Z.; Ji, Z.; He, M.; Wu, Y. Valence Band-Edge Engineering of Nickel Oxide Nanoparticles via Cobalt Doping for Application in p-type Dye-Sensitized Solar Cells. ACS Appl. Mater. Interfaces 2012, 4, 5922–5929. DOI: 10.1021/am301565j.
  • Kumar, S.; Kumar, A.; Kumar, A.; Balaji, R.; Krishnan, V. Highly Efficient Visible Light Active 2D-2D Nanocomposites of N-ZnO-g-C3N4 for Photocatalytic Degradation of Diverse Industrial Pollutants. ChemistrySelect 2018, 3, 1919–1932. DOI: 10.1002/slct.201703156.
  • Kumar, A.; Reddy, K. L.; Kumar, S.; Kumar, A.; Sharma, V.; Krishnan, V. Rational Design and Development of Lanthanide-Doped NaYF4@CdS–Au–RGO as Quaternary Plasmonic Photocatalysts for Harnessing Visible– near-Infrared Broadband Spectrum. ACS Appl. Mater. Interfaces. 2018, 10, 15565–15581.
  • Kumar, A.; Kumar, S.; Bahuguna, A.; Kumar, A.; Sharma, V.; Krishnan, V. Recyclable, Bifunctional Composites of Perovskite Type N-CaTiO3 and Reduced Grapheme Oxide as an Efficient Adsorptive Photocatalyst for Environmental Remediation. Mater. Chem. Front. 2017, 1, 2391–2404. DOI: 10.1039/C7QM00362E.
  • Kumar, S.; Sharma, R.; Sharma, V.; Harith, G.; Sivakumar, V.; Krishnan, V. Role of RGO Support and Irradiation Source on the Photocatalytic Activity of CdS–ZnO Semiconductor Nanostructures. Beilstein J. Nanotechnol. 2016, 7, 1684–1697. DOI: 10.3762/bjnano.7.161.
  • Greiner, M. T.; Helander, M. G.; Wang, Z. B.; Tang, W. M.; Lu, Z. H. Effects of Processing Conditions on the Work Function and Energy-Level Alignment of NiO Thin Films. J. Phys. Chem. C. 2010, 114, 19777–19781. DOI: 10.1021/jp108281m.
  • Banerjee, S.; Gopal, J.; Muraleedharan, P.; Tyagi, A. K.; Raj, B. Physics and Chemistry of Photocatalytic Titanium Dioxide: Visualization of Bactericidal Activity Using Atomic Force Microscopy. Curr. Sci. 2006, 90, 1378–1383.
  • Yang, L.; Dong, S.; Sun, J.; Feng, J.; Wu, Q.; Sun, S. Microwave-Assisted Preparation, Characterization and Photocatalytic Properties of a Dumbbell-Shaped ZnO Photocatalyst. J. Hazard. Mater. 2010, 179, 438–443. DOI: 10.1016/j.jhazmat.2010.03.023.
  • Elmolla, E. S.; Chaudhuri, M. Degradation of Amoxicillin, Ampicillin and Cloxacillin Antibiotics in Aqueous Solution by the UV/ZnO Photocatalytic Process. J. Hazard. Mater. 2010, 173, 445–449. DOI: 10.1016/j.jhazmat.2009.08.104.
  • Hayat, K.; Gondal, M.; Khaled, M. M.; Ahmed, S.; Shemsi, A. M. Nano ZnO Synthesis by Modified Sol Gel Method and Its Application in Heterogeneous Photocatalytic Removal of Phenol from Water. Appl. Catal. A 2011, 393, 122–129. DOI: 10.1016/j.apcata.2010.11.032.
  • Tian, C.; Zhang, Q.; Wu, A.; Jiang, M.; Liang, Z.; Jiang, B.; Fu, H. Cost-Effective large-Scale Synthesis of ZnO Photocatalyst with Excellent Performance for Dye Photodegradation. Chem. Commun. (Camb) 2012, 48, 2858–2860.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.