246
Views
3
CrossRef citations to date
0
Altmetric
Article

Studies on the role of curcumin concentration, synthesis time, mechanism of formation, and fluorescence properties of curcumin–copper phosphate hybrid nanoflowers

& ORCID Icon
Pages 1499-1506 | Received 03 Jul 2020, Accepted 18 Oct 2020, Published online: 29 Oct 2020

References

  • Ge, J.; Lei, J.; Zare, R. N. Protein-Inorganic Hybrid Nanoflowers. Nat. Nanotechnol. 2012, 7, 428–432. DOI: 10.1038/nnano.2012.80.
  • Cui, J.; Jia, S. Organic–Inorganic Hybrid Nanoflowers: A Novel Host Platform for Immobilizing Biomolecules. Coord. Chem. Rev. 2017, 352, 249–263. DOI: 10.1016/j.ccr.2017.09.008.
  • Altinkaynak, C.; Tavlasoglu, S.; Özdemir, N.; Ocsoy, I. A New Generation Approach in Enzyme Immobilization: Organic-Inorganic Hybrid Nanoflowers with Enhanced Catalytic Activity and Stability. Enzyme Microb. Technol. 2016, 93–94, 105–112. DOI: 10.1016/j.enzmictec.2016.06.011.
  • Kim, K. H.; Jeong, J. M.; Lee, S. J.; Choi, B. G.; Lee, K. G. Protein-Directed Assembly of Cobalt Phosphate Hybrid Nanoflowers. J. Colloid Interface Sci. 2016, 484, 44–50. DOI: 10.1016/j.jcis.2016.08.059.
  • Wang, L. B.; Wang, Y. C.; He, R.; Zhuang, A.; Wang, X.; Zeng, J.; Hou, J. G. A New Nanobiocatalytic System Based on Allosteric Effect with Dramatically Enhanced Enzymatic Performance. J. Am. Chem. Soc. 2013, 135, 1272–1275. DOI: 10.1021/ja3120136.
  • Wang, R.; Zhang, Y.; Lu, D.; Ge, J.; Liu, Z.; Zare, R. N. Functional Protein-Organic/Inorganic Hybrid Nanomaterials. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2013, 5, 320–328. DOI: 10.1002/wnan.1210.
  • Lyu, F.; Zhang, Y.; Zare, R. N.; Ge, J.; Liu, Z. One-Pot Synthesis of Protein-Embedded Metal-Organic Frameworks with Enhanced Biological Activities. Nano Lett. 2014, 14, 5761–5765. DOI: 10.1021/nl5026419.
  • Priyadarsini, K. I. The Chemistry of Curcumin: From Extraction to Therapeutic Agent. Molecules 2014, 19, 20091–20112. DOI: 10.3390/molecules191220091.
  • Priyadarsini, K. I. Photophysics, Photochemistry and Photobiology of Curcumin: Studies from Organic Solutions, Bio-Mimetics and Living Cells. J. Photochem. Photobiol. C: Photochem. Rev. 2009, 10, 81–95. DOI: 10.1016/j.jphotochemrev.2009.05.001.
  • Zhang, H. Y. One-Compound-Multiple-Targets Strategy to Combat Alzheimer’s Disease. FEBS Lett. 2005, 579, 5260–5264. DOI: 10.1016/j.febslet.2005.09.006.
  • Yoshino, M.; Haneda, M.; Naruse, M.; Htay, H. H.; Tsubouchi, R.; Qiao, S. L.; Li, W. H.; Murakami, K.; Yokochi, T. Prooxidant Activity of Curcumin: Copper-Dependent Formation of 8-Hydroxy-2′-Deoxyguanosine in DNA and Induction of Apoptotic Cell Death. Toxicol. In Vitro 2004, 18, 783–789. DOI: 10.1016/j.tiv.2004.03.009.
  • Ahsan, H.; Hadi, S. M. Strand Scission in DNA Induced by Curcumin in the Presence of Cu(II). Cancer. Lett. 1998, 124, 23–30. DOI: 10.1016/s0304-3835(97)00442-4.
  • Baum, L.; Ng, A. Curcumin Interaction with Copper and Iron Suggests One Possible Mechanism of Action in Alzheimer’s Disease Animal Models. J. Alzheimers Dis. 2004, 6, 367–377. DOI: 10.3233/jad-2004-6403.
  • Ahsan, H.; Parveen, N.; Khan, N. U.; Hadi, S. M. Pro-Oxidant, Anti-Oxidant and Cleavage Activities on DNA of Curcumin and Its Derivatives Demethoxycurcumin and Bisdemethoxycurcumin. Chem. Biol. Interact. 1999, 121, 161–175. DOI: 10.1016/s0009-2797(99)00096-4.
  • Koca, F. D.; Yilmaz, D. D.; Onmaz, N. E.; Ocsoy, I. Peroxidase-Like Activity and Antimicrobial Properties of Curcumin Inorganic Hybrid Nanostructure. Saudi J. Biol. Sci. 2020, 20, 2574–2579. DOI: 10.1016/j.sjbs.2020.05.025.
  • Zhu, L.; Gong, L.; Zhang, Y.; Wang, R.; Ge, J.; Liu, Z.; Zare, R. N. Rapid Detection of Phenol Using a Membrane Containing Laccase Nanoflowers. Chem Asian J. 2013, 8, 2358–2360. DOI: 10.1002/asia.201300020.
  • Alghunaimi, F. I.; Alsaeed, D. J.; Harith, A. M.; Saleh, T. A. Synthesis of 9-Octadecenoic Acid Grafted Graphene Modified with Polystyrene for Efficient Light Oil Removal from Water. J. Clean. Prod. 2019, 233, 946–953. DOI: 10.1016/j.jclepro.2019.05.239.
  • Lian, Q.; Liu, H.; Zheng, X.; Jia, D.; Liu, C.; Wang, D. Synthesis of Polyacrylonitrile Nanoflowers and Their Controlled pH-Sensitive Drug Release Behavior. RSC Adv. 2020, 10, 15715–15725. DOI: 10.1039/D0RA01427C.
  • Devamani, R. H. P.; Alagar, M. Synthesis and Characterization of Copper (II) Phosphate Nano Particles. Elixir Nanotechnol. 2013, 61, 16917–16921.
  • Koley, P.; Sakurai, M.; Aono, M. Controlled Fabrication of Silk Protein Sericin Mediated Hierarchical Hybrid Flowers and Their Excellent Adsorption Capability of Heavy Metal Ions of Pb(II), Cd(II) and Hg(II). ACS Appl. Mater. Interfaces 2016, 8, 2380–2392. DOI: 10.1021/acsami.5b11533.
  • Ismail, E. H.; Sabry, D. Y.; Mahdy, H.; Khalil, M. M. Synthesis and Characterization of Some Ternary Metal Complexes of Curcumin with 1,10-Phenanthroline and Their Anticancer Applications. J. Sci. Res. 2014, 6, 509–519. DOI: 10.3329/jsr.v6i3.18750.
  • Hu, K.; Huang, X.; Gao, Y.; Huang, X.; Xiao, Hang, X.; McClements, D. J. Core-Shell Biopolymer Nanoparticle Delivery Systems: Synthesis and Characterization of Curcumin Fortified Zein-Pectin Nanoparticles. Food Chem. 2015, 182, 275–281. DOI: 10.1016/j.foodchem.2015.03.009.
  • Zebib, B.; Mouloungui, Z.; Noirot, V. Stabilization of Curcumin by Complexation with Divalent Cations in Glycerol/Water System. Bioinorg. Chem. Appl. 2010, 2010, 292760, 8 pages. DOI: 10.1155/2010/292760

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.