145
Views
4
CrossRef citations to date
0
Altmetric
Article

The research on the electrochemical performance of Li2FeSiO4/mgx and Li2FeSiO4/cux

, , , &
Pages 1536-1545 | Received 08 Jun 2020, Accepted 18 Oct 2020, Published online: 02 Nov 2020

References

  • Tan, J.; Li, D.; Liu, Y.; Zhang, P.; Qu, Z.; Yan, Y.; Hu, H.; Cheng, H.; Zhang, J.; Dong, M.; et al. A Self-Supported 3D Aerogel Network Lithium–Sulfur Battery Cathode: Sulfur Spheres Wrapped with Phosphorus Doped Graphene and Bridged with Carbon Nanofibers. J. Mater. Chem. A 2020, 8, 7980–7990.
  • Fu, Y.; Pei, X.; Dai, Y.; Mo, D.; Lyu, S. Three-Dimensional Graphene-Like Carbon Prepared from CO2 as Anode Material for High-Performance Lithium-Ion Batteries. ES Energy Environ. 2019, 4, 66–73.
  • Li, R.; Zhu, X.; Fu, Q.; Liang, G.; Chen, Y.; Luo, L.; Dong, M.; Shao, Q.; Lin, C.; Wei, R.; et al. Nanosheet-Based Nb12O29 Hierarchical Microspheres for Enhanced Lithium Storage. Chem. Commun. (Camb.). 2019, 55, 2493–2496. DOI: 10.1039/c8cc09924c.
  • Hou, C.; Wang, J.; Du, W.; Wang, J.; Du, Y.; Liu, C.; Zhang, J.; Hou, H.; Dang, F.; Zhao, L.; et al. One-Pot Synthesized Molybdenum Dioxide–Molybdenum Carbide Heterostructures Coupled with 3D Holey Carbon Nanosheets for Highly Efficient and Ultrastable Cycling Lithium-Ion Storage. J. Mater. Chem. A. 2019, 7, 13460–13472.
  • Ritchie, A.; Howard, W. Recent Developments and Likely Advances in Lithium-Ion Batteries. J. Power Sourc. 2006, 162, 809–812.
  • Li, R.; Lin, C.; Wang, N.; Luo, L.; Chen, Y.; Li, J.; Guo, Z. Advanced Composites of Complex Ti-Based Oxides as Anode Materials for Lithium-Ion Batteries. Adv. Compos. Hybrid Mater. 2018, 1, 440–459.
  • Doan, T. N. L.; Bakenov, Z.; Taniguchi, I. Preparation of Carbon Coated LiMnPO4 Powders by a Combination of Spray Pyrolysis with Dry Ball-Milling Followed by Heat Treatment. Adv. Powder Technol. 2010, 21, 187–196.
  • Nytén, A.; Abouimrane, A.; Armand, M.; Gustafsson, T.; Thomas, J. O. Electrochemical Performance of Li2FeSiO4 as a New Li-Battery Cathode Material. Electrochem. Commun. 2005, 7, 156–160.
  • Armand, M.; Tarascon, J. M.; Arroyo-de Dompablo, M. E. Comparative Computational Investigation of N and F Substituted Polyoxoanionic Compounds: The Case of Li2FeSiO4 Electrode Material. Electrochem. Commun. 2011, 13, 1047–1050.
  • Zheng, Z.; Wang, Y.; Zhang, A.; Zhang, T.; Cheng, F.; Tao, Z.; Chen, J. Porous Li2FeSiO4/C Nanocomposite as the Cathode Material of Lithium-Ion Batteries. J. Power Sourc. 2012, 198, 229–235.
  • Arroyo y de Dompablo, M. E.; Amador, U.; Gallardo-Amores, J. M.; Morán, E.; Ehrenberg, H.; Dupont, L.; Dominko, R. Polymorphs of Li3PO4 and Li2MSiO4 (M = Mn, Co): The Role of Pressure. J. Power Sources 2009, 189, 638–642.
  • Gong, Z. L.; Li, Y. X.; Yang, Y. Synthesis and Characterization of Li2MnxFe1-xSiO4 as a Cathode Material for Lithium-Ion Batteries. Electrochem. Solid-State Lett. 2006, 9, A542–A544.
  • Gong, Z.; Yang, Y. Recent Advances in the Research of Polyanion-Type Cathode Materials for Li-Ion Batteries. Energy Environ. Sci. 2011, 4, 3223–3242.
  • Arroyo-de Dompablo, M. E.; Armand, M.; Tarascon, J. M.; Amador, U. On-Demand Design of Polyoxianionic Cathode Materials Based on Electronegativity Correlations: An Exploration of the Li2MSiO4 System (M = Fe, Mn, Co, Ni). Electrochem. Commun. 2006, 8, 1292–1298.
  • Larsson, P.; Ahuja, R.; Nyten, A.; Thomas, J. An ab Initio Study of the Li-Ion Battery Cathode Material Li2FeSiO4. Electrochem. Commun. 2006, 8, 797–800.
  • Gong, Z. L.; Li, Y. X.; He, G. N.; Li, J.; Yang, Y. Nanostructured Li2FeSiO4 Electrode Material Synthesized through Hydrothermal-Assisted Sol-Gel Process [J]. Electrochem. Solid-State Lett. 2008, 11, A60–A63.
  • Dominko, R.; Bele, M.; Gaberšček, M.; Meden, A.; Remškar, M.; Jamnik, J. Structure and Electrochemical Performance of Li2MnSiO4 and Li2FeSiO4 as Potential Li-Battery Cathode Materials. Electrochem. Commun. 2006, 8, 217–222.
  • Dominko, R. Li2MSiO4 (M = Fe and/or Mn) Cathode Materials. J. Power Sourc. 2008, 184, 462–468.
  • Qu, L.; Fang, S.; Yang, L.; Hirano, S-i. Li2FeSiO4/C Cathode Material Synthesized by Template-Assisted Sol–Gel Process with Fe2O3 Microsphere. J. Power Sourc. 2012, 217, 243–247.
  • Yan, Z.; Cai, S.; Zhou, X.; Zhao, Y.; Miao, L. Sol-Gel Synthesis of Nanostructured Li2FeSiO4/C as Cathode Material for Lithium Ion Battery. J. Electrochem. Soc. 2012, 159, A894–A898.
  • Qu, L.; Liu, Y.; Fang, S.; Yang, L.; Hirano, S-i. Li2FeSiO4 Coated by Sorbitanlaurat-Derived Carbon as Cathode of High-Performance Lithium-Ion Battery. Electrochim. Acta. 2015, 163, 123–131.
  • Huang, H.; Yin, S. C.; Nazar, L. F. Approaching Theoretical Capacity of LiFePO4 at Room Temperature at High Rates[J]. Electrochem. Solid-State Lett. 2001, 4, A170–A172.
  • Gao, H.; Wang, L.; Zhang, Y.; Zhang, A.; Song, Y. Tartaric Acid Assisted Synthesis of Li2FeSiO4/C: Effect of Carbon Content on the Electrochemical Performance of Li2FeSiO4/C for Lithium Ion Batteries. Powder Technol. 2014, 253, 638–643.
  • Deng, C.; Zhang, S.; Yang, S. Y. Effect of Mn Substitution on the Structural, Morphological and Electrochemical Behaviors of Li2Fe1-xMnxSiO4 Synthesized via Citric Acid Assisted Sol-Gel Method. J. Alloys Compd. 2009, 487, L18–L23.
  • Idrees, M.; Batool, S.; Zhuang, Q.; Kong, J.; Seok, I.; Zhang, J.; Liu, H.; Murugadoss, V.; Gao, Q.; Guo, Z.; et al. Achieving Carbon-Rich Silicon-Containing Ceramic Anode for Advanced Lithium Ion Battery. Ceram. Int. 2019, 45, 10572–10580.
  • Yan, L.; Wang, H.; Huang, D.; Luo, H. Electrodes with High Conductivities for High Performance Lithium/Sodium Ion Batteries. Eng. Sci. 2018, 1, 4–20.
  • Zhang, S.; Deng, C.; Fu, B. L.; Yang, S. Y.; Ma, L. Doping Effects of Magnesium on the Electrochemical Performance of Li2FeSiO4 for Lithium Ion Batteries. Electroanal. Chem. 2010, 644, 150–154.
  • Zhang, L.-L.; Duan, S.; Yang, X.-L.; Liang, G.; Huang, Y.-H.; Cao, X.-Z.; Yang, J.; Ni, S.-B.; Li, M. Systematic Investigation on Cadmium-Incorporation in Li2FeSiO4/C Cathode Material for Lithium-Ion Batteries. Sci. Rep. 2014, 4, 5064. DOI: 10.1038/srep05064.
  • Jayanthi, S. Studies on Ionic Liquid Incorporated Polymer Blend Electrolytes for Energy Storage Applications. Adv. Compos. Hybrid Mater. 2019, 2, 351–360.
  • Tong, H.; Zhou, Q.; Zhang, B.; Wang, X.; Yao, Y. A Novel Core-Shell Structured Nickel-Rich Layered Cathode Material for High-Energy Lithium-Ion Batteries. Eng. Sci. 2019, 8, 25–32.
  • Lu, X.; Chiu, H.-C.; Bevan, K. H.; Jiang, D.-T.; Zaghib, K.; Demopoulos, G. P. Density Functional Theory Insights into the Structural Stability and Li Diffusion Properties of Monoclinic and Orthorhombic Li2FeSiO4 Cathodes. J. Power Sourc. 2016, 318, 136–145.
  • Shao, B.; Taniguchi, I. Synthesis of Li2FeSiO4/C Nanocomposite Cathodes for Lithium Batteries by a Novel Synthesis Route and Their Electrochemical Properties. J. Power Sourc. 2012, 199, 278–286.
  • Liu, S.; Xu, J.; Li, D.; Hu, Y.; Liu, X.; Xie, K. High Capacity Li2MnSiO4/C Nanocomposite Prepared by Sol-Gel Method for Lithium-Ion Batteries. J. Power Sourc. 2013, 232, 258–263.
  • Li, L.; Han, E.; Yang, P.; Zhu, L.; Liu, Y. Study on Electrochemical Performance of Mg-Doped Li2FeSiO4 Cathode Material for Li-Ion Batteries. Ionics. 2018, 24, 1869–1878.
  • Xu, Y.; Shen, W.; Zhang, A.; Liu, H.; Ma, Z. Template-Free Hydrothermal Synthesis of Li2FeSiO4 Hollow Spheres as Cathode Materials for Lithium-Ion Batteries. J. Mater. Chem. A 2014, 2, 12982–12990.
  • Zhao, X. C.; Yang, P.; Yang, L. J.; Cheng, Y.; Chen, H.-Y.; Liu, H.; Wang, G.; Murugadoss, V.; Angaiah, S.; Guo, Z. et al. Enhanced Electrochemical Performance of Cu2+ Doped TiO2 Nanoparticles for Lithium-Ion Battery. ES Mater. Manufact. 2018, 1, 67–71.
  • Xie, P.; Li, Y.; Hou, Q.; Sui, K.; Liu, C.; Fu, X.; Zhang, J.; Murugadoss, V.; Fan, J.; Wang, Y.; et al. Tunneling-Induced Negative Permittivity in Ni/MnO Nanocomposites by a Bio-Gel Derived Strategy. J. Mater. Chem. C. 2020, 8, 3029–3039.
  • Batool, S.; Idrees, M.; Kong, J.; Zhang, J.; Kong, S.; Dong, M.; Hou, H.; Fan, J.; Wei, H.; Guo, Z.; et al. Assessment of the Electrochemical Behaviour of Silicon@ Carbon Nanocomposite Anode for Lithium-Ion Batteries. J. Alloys Compd. 2020, 832, 154644.
  • Franger, S.; Le Cras, F.; Bourbon, C.; Rouault, H. LiFePO4 Synthesis Routes for Enhanced Electrochemical Performance. Electrochem. Solid-State Lett. 2002, 5, A231–233.
  • Hsu, K. F.; Tsay, S.; Hwang, B. Physical at Various Pyrolysis Periods. J. Power Sourc. 2005, 146, 529–533.
  • Dominko, R.; Arčon, I.; Kodre, A.; Hanžel, D.; Gaberšček, M. In-Situ XAS Study on Li2MnSiO4 and Li2FeSiO4 Cathode materials. J. Power Sourc. 2009, 189, 51–58.
  • Yuan, L.-X.; Wang, Z.-H.; Zhang, W.-X.; Hu, X.-L.; Chen, J.-T.; Huang, Y.-H.; Goodenough, J. B. Development and Challenges of LiFePO4 Cathode Material for Lithium-Ion Batteries. Energy Environ. Sci. 2011, 4, 269–284.
  • Nishimura, S-i.; Hayase, S.; Kanno, R.; Yashima, M.; Nakayama, N.; Yamada, A. Structure of Li2FeSiO4. J. Am. Chem. Soc. 2008, 130, 13212–13213. DOI: 10.1021/ja805543p.
  • Zhang, S.; Deng, C.; Yang, S. Y. Preparation of nano-Li2FeSiO4 as Cathode Material for Lithium-Ion Batteries. Electrochem. Solid-State Lett. 2009, 12, A136–A139.
  • Yabuuchi, N.; Yamakawa, Y.; Yoshii, K.; Komaba, S. Hydrothermal Synthesis and Characterization of Li2FeSiO4 as Positive Electrode Materials for Li-Ion Batteries. Electrochemistry. 2010, 78, 363–366.
  • Tarascon, J. M.; Armand, M. Issues and Challenges Facing Rechargeable Lithium batteries. Nature. 2001, 414, 359–367. DOI: 10.1038/35104644.
  • Idrees, M.; Batool, S.; Kong, J.; Zhuang, Q.; Liu, H.; Shao, Q.; Lu, N.; Feng, Y.; Wujcik, E. K.; Gao, Q.; et al. Polyborosilazane Derived Ceramics-Nitrogen Sulfur Dual Doped Graphene Nanocomposite Anode for Enhanced Lithium Ion Batteries. Electrochim. Acta. 2019, 296, 925–937.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.