134
Views
0
CrossRef citations to date
0
Altmetric
Article

Effect of nitro substitution of azo-chalcone derivatives nano film on electrical memory properties

, &
Pages 1553-1559 | Received 03 Jun 2020, Accepted 18 Oct 2020, Published online: 11 Nov 2020

References

  • Marti, X.; Fina, I.; Frontera, C.; Liu, J.; Wadley, P.; He, Q.; Paull, R. J.; Clarkson, J. D.; Kudrnovský, J.; Turek, I.; et al. Room-Temperature Antiferromagnetic Memory Resistor. Nat. Mater. 2014, 13, 367–374. DOI: 10.1038/nmat3861.
  • Wright, C. D.; Liu, Y.; Kohary, K. I.; Aziz, M. M.; Hicken, R. J. Arithmetic and Biologically-Inspired Computing Using Phase-Change Materials. Adv. Mater. 2011, 23, 3408–3413. DOI: 10.1002/adma.201101060.
  • Joshua Yang, J.; Miao, F.; Pickett, M. D.; Ohlberg, D. A. A.; Stewart, D. R.; Lau, C. N.; Williams, R. S. The Mechanism of Electroforming of Metal Oxide Memristive Switches. Nanotechnology 2009, 20, 215201–215209. DOI: 10.1088/0957-4484/20/21/215201.
  • Koo, H.-J.; So, J.-H.; Dickey, M. D.; Velev, O. D. Towards All-Soft Matter Circuits: prototypes of Quasi-Liquid Devices with Memristor Characteristics. Adv. Mater. 2011, 23, 3559–3564. DOI: 10.1002/adma.201101257.
  • Liu, Q.; Zhao, C.; Tian, G.; Ge, H. Changing Molecular Conjugation with a Phenazine Acceptor for Improvement of Small Molecule-Based Organic Electronic Memory Performance. RSC Adv. 2018, 8, 805–811.
  • Froemberg, D.; Schmidt-Martens, H. H.; Sokolov, I. M.; Sagués, F. Asymptotic Front Behavior in an A+B→2A Reaction under Subdiffusion. Phys. Rev. E 2011, 83, 031101–031108.
  • Savel'ev, S. E.; Alexandrov, A. S.; Bratkovsky, A. M.; Williams, R. S. Molecular Dynamics Simulations of Oxide Memory Resistors (Memristors). Nanotechnology 2011, 22, 254011–254017. DOI: 10.1088/0957-4484/22/25/254011.
  • Sun, X.; Li, G.; Ding, L.; Yang, N.; Zhang, W. Unipolar Memristors Enable “Stateful” Logic Operations via Material Implication. Appl. Phys. Lett. 2011, 99, 072101–072103.
  • Simão, C.; Mas-Torrent, M.; Casado-Montenegro, J.; Otón, F.; Veciana, J.; Rovira, C. A Three-State Surface-Confined Molecular Switch with Multiple Channel Outputs. J. Am. Chem. Soc. 2011, 133, 13256–13259. DOI: 10.1021/ja204898u.
  • Hu, B.; Wang, C.; Wang, J.; Gao, J.; Wang, K.; Wu, J.; Zhang, G.; Cheng, W.; Venkateswarlu, B.; Wang, M.; et al. Inorganic–Organic Hybrid Polymer with Multiple Redox for High-Density Data Storage. Chem. Sci. 2014, 5, 3404–3408.
  • Liu, Z.; Shi, E.; Wan, Y.; Li, N.; Chen, D.; Xu, Q.; Li, H.; Lu, J.; Zhang, K.; Wang, L.; et al. Effects of Gradual Oxidation of Aromatic Sulphur-Heterocycle Derivatives on Multilevel Memory Data Storage Performance. J. Mater. Chem. C 2015, 3, 2033–2039.
  • Liu, Z.; He, J.; Zhuang, H.; Li, H.; Li, N.; Chen, D.; Xu, Q.; Lu, J.; Zhang, K.; Wang, L.; et al. Effect of Single Atom Substitution in Benzochalcogendiazole Acceptors on the Performance of Ternary Memory Devices. J. Mater. Chem. C 2015, 3, 9145–9153.
  • Wang, C.; Hu, B.; Wang, J.; Gao, J.; Li, G.; Xiong, W.-W.; Zou, B.; Suzuki, M.; Aratani, N.; Yamada, H.; et al. Rewritable Multilevel Memory Performance of a Tetraazatetracene Donor-Acceptor Derivative with Good Endurance. Chem. Asian. J. 2015, 10, 116–119. DOI: 10.1002/asia.201402899.
  • Hwang, S. K.; Lee, J. M.; Kim, S.; Park, J. S.; Park, H. I.; Ahn, C. W.; Lee, K. J.; Lee, T.; Kim, S. O. Flexible Multilevel Resistive Memory with Controlled Charge Trap B- and N-Doped Carbon Nanotubes. Nano Lett. 2012, 12, 2217–2221. DOI: 10.1021/nl204039q.
  • Miao, S.; Zhu, Y.; Bao, Q.; Li, H.; Li, N.; Ji, S.; Xu, Q.; Lu, J.; Wang, L. Solution-Processed Small Molecule Donor/Acceptor Blends for Electrical Memory Devices with Fine-Tunable Storage Performance. J. Phys. Chem. C 2014, 118, 2154–2160.
  • Tilborg, A.; Norberg, B.; Wouters, J. Pharmaceutical Salts and Cocrystals Involving Amino Acids: A Brief Structural Overview of the State-of-Art. Eur. J. Med. Chem. 2014, 74, 411–426. DOI: 10.1016/j.ejmech.2013.11.045.
  • Shang, Y.; Wen, Y.; Li, S.; Du, S.; He, X.; Cai, L.; Li, Y.; Yang, L.; Gao, H.; Song, Y.; et al. A Triphenylamine-Containing Donor-Acceptor Molecule for Stable, Reversible, Ultrahigh Density Data Storage. J. Am. Chem. Soc. 2007, 129, 11674–11675. DOI: 10.1021/ja074226e.
  • Li, Y.; Qian, Q.; Zhu, X.; Li, Y.; Zhang, M.; Li, J.; Ma, C.; Li, H.; Lu, J.; Zhang, Q. Recent Advances in Organic-Based Materials for Resistive Memory Applications. InfoMat. 2020, 1–39.
  • Li, Y.; Zhu, X.; Li, Y.; Zhang, M.; Ma, C.; Li, H.; Lu, J.; Zhang, Q. Highly Robust Organometallic Small-Molecule-Based Nonvolatile Resistive Memory Controlled by a Redox-Gated Switching Mechanism. ACS Appl. Mater. Interfaces 2019, 11, 40332–40338. DOI: 10.1021/acsami.9b13401.
  • Li, Y.; Zhang, C.; Li, Z.; Gu, P.; Wang, Z.; Li, H.; Lu, J.; Zhang, Q. Controlled Deposition of Large-Area and Highly-Ordered Thin Films: effect of Dip-Coating-Induced Morphological Evolution on Resistive Memory Performance. J. Mater. Chem. C 2019, 7, 3512–3521.
  • Li, Y.; Wang, Z.; Zhang, C.; Gu, P.; Chen, W.; Li, H.; Lu, J.; Zhang, Q. Thiadizoloquinoxaline-Based N-Heteroacenes as Active Elements for High-Density Data-Storage Device. ACS Appl Mater Interfaces 2018, 10, 15971–15979. DOI: 10.1021/acsami.8b05178.
  • Li, Y.; Zhang, C.; Gu, P.; Wang, Z.; Li, Z.; Li, H.; Lu, J.; Zhang, Q. Nonvolatile Tri-State Resistive Memory Behavior of a Stable Pyrene-Fused N-Heteroacene with Ten Linearly-Annulated Rings. Chemistry 2018, 24, 7845–7851. DOI: 10.1002/chem.201801146.
  • Ye, F.-L.; Gu, P.-Y.; Zhou, F.; Liu, H.-F.; Xu, X.-P.; Li, H.; Xu, Q.-F.; Lu, J.-M. Preparation of Homopolymers from New Azobenzene Organic Molecules with Different Terminal Groups and Study of Their Nonvolatile Memory Effects. Polymer 2013, 54, 3324–3333. DOI: 10.1016/j.polymer.2013.04.043.
  • Miao, S.; Li, H.; Xu, Q.; Li, Y.; Ji, S.; Li, N.; Wang, L.; Zheng, J.; Lu, J. Tailoring of Molecular Planarity to Reduce Charge Injection Barrier for High-Performance Small-Molecule-Based Ternary Memory Device with Low Threshold Voltage. Adv. Mater. 2012, 24, 6210–6215. DOI: 10.1002/adma.201202319.
  • Li, H.; Xu, Q.; Li, N.; Sun, R.; Ge, J.; Lu, J.; Gu, H.; Yan, F. A Small-Molecule-Based Ternary Data-Storage Device. J. Am. Chem. Soc. 2010, 132, 5542–5543. DOI: 10.1021/ja910243f.
  • Miao, S.; Li, H.; Xu, Q.; Li, N.; Zheng, J.; Sun, R.; Lu, J.; Li, C. M. Molecular Length Adjustment for Organic Azo-Based Nonvolatile Ternary Memory Devices. J. Mater. Chem. 2012, 22, 16582–16589. DOI: 10.1039/c2jm32992a.
  • Miao, S.; Zhu, Y.; Zhuang, H.; Xu, X.; Li, H.; Sun, R.; Li, N.; Ji, S.; Lu, J. Adjustment of Charge Trap Number and Depth in Molecular Backbone to Achieve Tunable Multilevel Data Storage Performance. J. Mater. Chem. C 2013, 1, 2320–2327.
  • Zhuang, H.; Zhang, Q.; Zhu, Y.; Xu, X.; Liu, H.; Li, N.; Xu, Q.; Li, H.; Lu, J.; Wang, L.; et al. Effects of Terminal Electron Acceptor Strength on Film Morphology and Ternary Memory Performance of Triphenylamine Donor Based Devices. J. Mater. Chem. C 2013, 1, 3816–3824.
  • Ren, W.; Zhu, Y.; Ge, J.; Xu, X.; Sun, R.; Li, N.; Li, H.; Xu, Q.; Zheng, J.; Lu, J.; et al. Bistable Memory Devices with Lower Threshold Voltage by Extending the Molecular Alkyl-Chain Length. Phys. Chem. Chem. Phys. 2013, 15, 9212–9218. DOI: 10.1039/c3cp51290h.
  • Zhang, Y.; Zhuang, H.; Yang, Y.; Xu, X.; Bao, Q.; Li, N.; Li, H.; Xu, Q.; Lu, J.; Wang, L.; et al. Thermally Stable Ternary Data-Storage Device Based on Twisted Anthraquinone Molecular Design. J. Phys. Chem. C 2012, 116, 22832–22839.
  • Liu, Q.; Xu, Q.; Dong, H.; Li, H.; Chen, D.; Wang, L.; Li, Y.; Lu, J. A Salification-Induced Charge Transfer Effect for Improving the Resistive Memory Performance of Azo Derivative-Based Devices. RSC Adv. 2016, 6, 10471–10477.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.