224
Views
0
CrossRef citations to date
0
Altmetric
Article

Synthesis and characterization of a manganese(II) complex containing N(sp2)4-donor Schiff base ligand and interaction toward biomacromolecules

, , ORCID Icon, , &
Pages 1570-1579 | Received 12 May 2020, Accepted 18 Oct 2020, Published online: 02 Dec 2020

References

  • Dong, W.-K.; Li, X.-L.; Wang, L.; Zhang, Y.; Ding, Y.-J. A New Application of Salamo-Type Bisoximes: As a Relay–Sensor for Zn2+/Cu2+ and Its Novel Complexes for Successive Sensing of H+/OH−. Sensor. Actuat. 2016, B229, 370–378.
  • Wang, B.-J.; Dong, W.-K.; Zhang, Y.; Akogun, S. F. A. Novel Relay-Sensor for Highly Sensitive and Selective Detection of Zn2+/Pic − and Fluorescence on/off Switch Response of H+/OH−. Sensor. Actuat. 2017, B247, 254–264.
  • Che, C.-M.; Chan, S.-C.; Xiang, H.-F.; Chan, M. C. W.; Liu, Y.; Wang, Y. Tetradentate Schiff Base Platinum(II) Complexes as New Class of Phosphorescent Materials for High-Efficiency and White-Light Electroluminescent Devices. Chem. Commun. 2004, 1484–1485. DOI: 10.1039/b402318h.
  • Margerum, J. D.; Miller, L. J. Photochromism; Interscience, Wiley: New York, 1971; p 569.
  • Gupta, K. C.; Sutar, A. K. Catalytic Activities of Schiff Base Transition Metal Complexes. Coord. Chem. Rev. 2008, 252, 1420–1450. DOI: 10.1016/j.ccr.2007.09.005.
  • Kannappan, R.; Matsumoto, M.; Hallren, J.; Nicholas, K. M. New Chiral Schiff Base–Zinc Complexes and Their Esterolytic Catalytic Activity. J. Mol. Catal. 2011, A339, 72–78.
  • Li, L.-H.; Dong, W.-K.; Zhang, Y.; Akogun, S. F.; Xu, L. Syntheses, Structures and Catecholase Activities of Homo- and Hetero-Trinuclear Cobalt(II) Complexes Constructed from an Acyclic Naphthalenediol-Based Bis(Salamo)-Type Ligand. Appl. Organometal. Chem. 2017, 31, e3818. DOI: 10.1002/aoc.3818.
  • Ahamad, I.; Prasad, R.; Quraishi, M. A. Thermodynamic, Electrochemical and Quantum Chemical Investigation of Some Schiff Bases as Corrosion Inhibitors for Mild Steel in Hydrochloric Acid Solutions. Corros. Sci. 2010, 52, 933–942. DOI: 10.1016/j.corsci.2009.11.016.
  • Zhang, M.; Xian, D.-M.; Li, H.-H.; Zhang, J.-C.; You, Z.-L. Synthesis and Structures of Halo-Substituted Aroylhydrazones with Antimicrobial Activity. Aust. J. Chem. 2012, 65, 343–350. DOI: 10.1071/CH11424.
  • Saghatforoush, L.; Moeini, K.; Hosseini-Yazdi, S. A.; Mardani, Z.; Hajabbas-Farshchi, A.; Jameson, H. T.; Telfer, S. G.; Woollins, J. D. Theoretical and Experimental Investigation of Anticancer Activities of an Acyclic and Symmetrical Compartmental Schiff Base Ligand and Its Co(II). RSC Adv. 2018, 8, 35625–35639. DOI: 10.1039/C8RA07463A.
  • Saghatforoush, L.; Moeini, K.; Hosseini-Yazdi, S. A.; Mardani, Z.; Bakhtiari, A.; Hajabbas-Farshchi, A.; Honarvar, S.; Abdelbaky, M. S. M. Effective Anticancer Activities of an Acyclic Symmetrical Compartmental Schiff Base Ligand and Its Co(II), Cu(II) and Zn(II) Complexes against the Human Leukemia Cell Line K562. Polyhedron 2019, 170, 312–324. DOI: 10.1016/j.poly.2019.05.057.
  • Shanker, K.; Rohini, R.; Ravinder, V.; Reddy, P. M.; Ho, Y.-P. Ru(II) Complexes of N4 and N2O2 Macrocyclic Schiff Base Ligands: Their Antibacterial and Antifungal Studies. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2009, 73, 205–211. DOI: 10.1016/j.saa.2009.01.021.
  • Li, Y.; Yang, Z.-Y. DNA Binding Affinity and Antioxidative Activity of Copper(II) and Zinc(II) Complexes with a Novel Hesperetin Schiff Base Ligand. Inorg. Chim. Acta 2009, 362, 4823–4831. DOI: 10.1016/j.ica.2009.07.008.
  • Morrow, J. R.; Kolasa, K. A. Cleavage of DNA by Nickel Complexes. Inorg. Chim. Acta 1992, 195, 245–248. DOI: 10.1016/S0020-1693(00)85319-0.
  • Tiwari, A. D.; Mishra, A. K.; Mishra, S. B.; Mamba, B. B.; Maji, B.; Bhattacharya, S. Synthesis and DNA Binding Studies of Ni(II), Co(II), Cu(II) and Zn(II) Metal Complexes of N1,N5-Bis[Pyridine-2-Methylene]-Thiocarbohydrazone Schiff-Base Ligand. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2011, 79, 1050–1056. DOI: 10.1016/j.saa.2011.04.018.
  • Mardani, Z.; Hakimi, M.; Moeini, K.; Mohr, F. Reaction of 2-[(2-Aminoethyl)Amino]Ethanol with Pyridine-2-Carbaldehyde and Complexation of the Products with Cu(II) and Cd(II) along with Docking Studies. Acta Crystallogr. 2019, C75, 951–959.
  • Hakimi, M.; Tarani, B.; Mardani, Z.; Moeini, K.; Kučeráková, M.; Dušek, M. Spectral, Structural, Theoretical and Docking Studies of a Mn(II) Complex with an N4-Donor Ligand. J. Chem. Res. 2018, 42, 623–627. DOI: 10.3184/174751918X15422215897056.
  • Hakimi, M.; Ahmadi, S.; Mardani, Z.; Mohr, F. Docking Studies on an N4-Donor Schiff Base Ligand and Its Cu(II) Complex Supported by Structural, Spectral and Theoretical Studies. J. Chem. Res. 2019, 43, 170–178. DOI: 10.1177/1747519819857505.
  • Fan, L.; Liu, Z.; Zhang, Y.; Wang, F.; Zhao, D.; Yang, J.; Zhang, X. Electrochemical, and Magenetic Properties of 2D Coordination Polymers Based on the Mixed Ligands p-Terphenyl-2,2′′,5′′,5′′′-Tetracarboxylate Acid and 1,10-Phenanthroline. New J. Chem. 2019, 43, 13349–13356. DOI: 10.1039/C9NJ03530C.
  • Fan, L.; Zhang, Y.; Liang, J.; Wang, X.; Lv, H.; Wang, J.; Zhao, L.; Zhang, X. Structural Diversity, Magnetic Properties, and Luminescence Sensing of Five 3D Coordination Polymers Derived from Designed 3,5-Di(2′,4′-Dicarboxylphenyl)Benozoic Acid. CrystEngComm 2018, 20, 4752–4762. DOI: 10.1039/C8CE00877A.
  • Fan, L.; Wang, F.; Zhao, D.; Sun, X.; Chen, H.; Wang, H.; Zhang, X. Two Cadmium(II) Coordination Polymers as Multi-Functional Luminescent Sensors for the Detection of Cr(VI) Anions, Dichloronitroaniline Pesticide, and Nitrofuran Antibiotic in Aqueous Media. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, A239, 118467 DOI: 10.1016/j.saa.2020.118467.
  • Orvig, C.; Abrams, M. J. Medicinal Inorganic Chemistry: Introduction. Chem. Rev. 1999, 99, 2201–2204. DOI: 10.1021/cr980419w.
  • Yaman, M.; Kaya, G.; Yekeler, H. Distribution of Trace Metal Concentrations in Paired Cancerous and Non-Cancerous Human Stomach Tissues. World J. Gastroenterol. 2007, 13, 612–618. DOI: 10.3748/wjg.v13.i4.612.
  • Arjmand, F.; Muddassir, M.; Khan, R. H. Chiral Preference of I-Tryptophan Derived Metal-Based Antitumor Agent of Late 3d-Metal Ions (Co(II), Cu(II) and Zn(II)) in Comparison to d- and dl-Tryptophan Analogues: Their in Vitro Reactivity Towards CT DNA, 5′-GMP and 5′-TMP. Eur. J. Inorg. Chem. 2010, 45, 3549–3557.
  • Haas, K. L.; Franz, K. J. Application of Metal Coordination Chemistry to Explore and Manipulate Cell Biology. Chem. Rev. 2009, 109, 4921–4960. DOI: 10.1021/cr900134a.
  • Rebouças, J. S.; Spasojević, I.; Batinić-Haberle, I. Pure Manganese(III) 5,10,15,20-Tetrakis(4-Benzoic Acid)Porphyrin (MnTBAP) is Not a Superoxide Dismutase Mimic in Aqueous Systems: A Case of Structure–Activity Relationship as a Watchdog Mechanism in Experimental Therapeutics and Biology. J. Biol. Inorg. Chem. 2008, 13, 289–302. DOI: 10.1007/s00775-007-0324-9.
  • Li, Z.; Yan, H.; Liu, K.; Huang, X.; Niu, M. Syntheses, Structures, DNA/BSA Binding and Cytotoxic Activity Studies of Chiral Alcohol-Amine Schiff Base Manganese (II/III) Complexes. J. Mol. Struct. 2019, 1195, 470–478. DOI: 10.1016/j.molstruc.2019.05.110.
  • Dehkordi, M. N.; Bordbar, A. K.; Lincoln, P.; Mirkhani, V. Spectroscopic Study on the Interaction of ct-DNA with Manganese Salen Complex Containing Triphenyl Phosphonium Groups. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2012, 90, 50–54. DOI: 10.1016/j.saa.2012.01.015.
  • Zhu, L.-N.; Gao, H.-R.; Wang, H.-X.; Xu, M.-Y.; Li, X.-Z. Synthesis, Crystal Structures, and DNA Cleavage Activities of Manganese(II) Complexes: A Good Example of the Synergy between Metal Ions Prompting DNA Cleavage. Eur. J. Inorg. Chem. 2014, 2014, 2396–2405. DOI: 10.1002/ejic.201400044.
  • Weiss, H.; Riley, D. P. Therapeutic Aspects of Manganese (II)-Based Superoxide Dismutase Mimics. In Uses of Inorganic Chemistry in Medicine; The Royal Society of Chemistry: Cambridge, 1999, pp 77–92.
  • Ghosh, K.; Tyagi, N.; Kumar, P. Role of Carboxamido Nitrogen in Mononuclear Manganese Complex: Superoxide Scavenging Activity and Nuclease Activity. Inorg. Chem. Commun. 2010, 13, 380–383. DOI: 10.1016/j.inoche.2009.12.028.
  • Shrivastav, A.; Singh, N. K.; Tripathi, P.; George, T.; Dimmock, J. R.; Sharma, R. K. Copper(II) and Manganese(III) Complexes of N'-[(2-Hydroxy Phenyl) Carbonothioyl] Pyridine-2-Carbohydrazide: Novel Therapeutic Agents for Cancer. Biochim 2006, 88, 1209–1216. DOI: 10.1016/j.biochi.2006.03.004.
  • Geromichalos, G. D.; Tarushi, A.; Lafazanis, K.; Pantazaki, A. A.; Kessissoglou, D. P.; Psomas, G. In Vitro and in Silico Study of the Biological Activity of Manganese(III) Inverse-[9-MC-3]-Metallacrowns and Manganese(II) Complexes with the Anti-Inflammatory Drugs Diclofenac or Indomethacin. J. Inorg. Biochem. 2018, 187, 41–55. DOI: 10.1016/j.jinorgbio.2018.07.007.
  • Tarushi, A.; Zampakou, M.; Perontsis, S.; Lafazanis, K.; Pantazaki, A. A.; Hatzidimitriou, A. G.; Geromichalos, G. D.; Psomas, G. Manganese(II) Complexes of Tolfenamic Acid or Naproxen in Polymeric Structures or Encapsulated in [15-MC-5] Manganese(III) Metallacrowns: Structure and Biological Activity. Inorg. Chim. Acta 2018, 483, 579–592. DOI: 10.1016/j.ica.2018.09.001.
  • Kaya, B.; Kaya, K.; Koca, A.; Ülküseven, B. Thiosemicarbazide-Based Iron(III) and Manganese(III) Complexes. Structural, Electrochemical Characterization and Antioxidant Activity. Polyhedron 2019, 173, 114130. DOI: 10.1016/j.poly.2019.114130.
  • Icsel, C.; Yilmaz, V. T.; Aydinlik, Ş.; Aygun, M. New Manganese(II), Iron(II), Cobalt(II), Nickel(II) and Copper(II) Saccharinate Complexes of 2,6-Bis(2-Benzimidazolyl)Pyridine as Potential Anticancer Agents. Eur. J. Inorg. Chem. 2020, 202, 112535.
  • El-Shwiniy, W. H.; Shehab, W. S.; Zordok, W. A. Spectral, Thermal, DFT Calculations, Anticancer and Antimicrobial Studies for Bivalent Manganese Complexes of Pyrano[2,3-d]Pyrimidine Derivatives. J. Mol. Struct. 2020, 1199, 126993. DOI: 10.1016/j.molstruc.2019.126993.
  • Ghosh, K.; Tyagi, N.; Kumar, P.; Singh, U. P.; Goel, N. Stabilization of Mn(II) and Mn(III) in Mononuclear Complexes Derived from Tridentate Ligands with N2O Donors: Synthesis, Crystal Structure, Superoxide Dismutase Activity and DNA Interaction Studies. J. Inorg. Biochem. 2010, 104, 9–18. DOI: 10.1016/j.jinorgbio.2009.09.014.
  • Sharma, D.; Revanasiddappa, H. D.; Jayalakshmi, B. DNA/BSA Interaction and In Vitro Antimicrobial Studies of Mn(III) Complexes Bearing Bidentate N, O Donor Schiff Bases. J. Iran. Chem. Soc. 2020, 17, 43–58. DOI: 10.1007/s13738-019-01745-9.
  • Ghosh, R. D.; Banerjee, K.; Das, S.; Ganguly, A.; Chakraborty, P.; Sarkar, A.; Chatterjee, M.; Choudhuri, S. K. A Novel Manganese Complex, Mn-(II) N-(2-Hydroxy Acetophenone) Glycinate Overcomes Multidrug-Resistance in Cancer. Eur. J. Pharm. Sci. 2013, 49, 737–747. DOI: 10.1016/j.ejps.2013.05.002.
  • Marandi, F.; Moeini, K.; Alizadeh, F.; Mardani, Z.; Quah, C. K.; Loh, W.-S.; Woollins, J. D. Treatment of Cadmium(II) and Zinc(II) with N 2 -Donor Linkages in Presence of β-Diketone Ligand; Supported by Structural, Spectral, Theoretical and Docking Studies. Inorg. Chim. Acta 2018, 482, 717–725. DOI: 10.1016/j.ica.2018.07.014.
  • Mardani, Z.; Kazemshoar-Duzduzani, R.; Moeini, K.; Hajabbas-Farshchi, A.; Carpenter-Warren, C.; Slawin, A. M. Z.; Woollins, J. D. Anticancer Activities of a β-Amino Alcohol Ligand and Nanoparticles of Its Copper(ii) and Zinc(ii) Complexes Evaluated by Experimental and Theoretical Methods. RSC Adv. 2018, 8, 28810–28824. DOI: 10.1039/C8RA04578J.
  • Hakimi, M.; Sadeghi, F.; Feizi, N.; Moeini, K.; Kucerakova, M.; Dusek, M. Investigation of the Effect of the N-Oxidation Process on the Interaction of Selected Pyridine Compounds with Biomacromolecules: Structural, Spectral, Theoretical and Docking Studies. Acta Crystallogr. 2019, C75, 750–757.
  • Adeniyi, A. A.; Ajibade, P. A. Comparing the Suitability of Autodock, Gold and Glide for the Docking and Predicting the Possible Targets of Ru(II)-Based Complexes as Anticancer Agents. Molecules 2013, 18, 3760–3778. DOI: 10.3390/molecules18043760.
  • Moghadam, N. H.; Salehzadeh, S.; Shahabadi, N. Spectroscopic and Molecular Docking Studies on the Interaction of Antiviral Drug Nevirapine with Calf Thymus DNA. Nucleos. Nusleot. Nucl. 2017, 36, 553–570.
  • Abedi, M.; Khandar, A. A.; Gargari, M. S.; Gurbanov, A. V.; Hosseini, S. A.; Mahmoudi, G. Syntheses, Characterization, and Crystal Structures of a Dinuclear Complex and Coordination Polymer of Mercury(II) with Schiff Base Ligands Containing N3 and N4Donors. Z. Anorg. Allg. Chem. 2014, 640, 2193–2197. DOI: 10.1002/zaac.201400273.
  • Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; et al. Gaussian 09; Gaussian, Inc.: Wallingford, CT, 2009.
  • Perdew, J. P. Density-Functional Approximation for the Correlation Energy of the Inhomogeneous Electron Gas. Phys. Rev. 1986, B33, 8822–8824.
  • Gavezzotti, A. Are Crystal Structures Predictable? Acc. Chem. Res. 1994, 27, 309–314. DOI: 10.1021/ar00046a004.
  • Jones, G.; Willett, P.; Glen, R. C.; Leach, A. R.; Taylor, R. Development and Validation of a Genetic Algorithm for Flexible Docking. J. Mol. Biol. 1997, 267, 727–748. DOI: 10.1006/jmbi.1996.0897.
  • Rigaku Oxford Diffraction, CrysAlisPro Software System, Version 1.171.xx.xx; Rigaku Corporation: Oxford, 2018.
  • Palatinus, L.; Chapuis, G. SUPERFLIP – A Computer Program for the Solution of Crystal Structures by Charge Flipping in Arbitrary Dimensions. J. Appl. Crystallogr. 2007, 40, 786–790. DOI: 10.1107/S0021889807029238.
  • Petříček, V.; Dušek, M.; Palatinus, L. Crystallographic Computing System JANA2006: General Features. ZKRI 2014, 229, 345–352.
  • Rohlicek, J.; Husak, M. MCE2005 – A New Version of a Program for Fast Interactive Visualization of Electron and Similar Density Maps Optimized for Small Molecules. J. Appl. Crystallogr. 2007, 40, 600–601.
  • Farrugia, L. J. ORTEP-3 for Windows – A Version of ORTEP-III with a Graphical User Interface (GUI). J. Appl. Crystallogr. 1997, 30, 565–565. DOI: 10.1107/S0021889897003117.
  • Burnett, M. N.; Johnson, C. K. Ortep-III, Report ORNL-6895; Oak Ridge National Laboratory: Oak Ridge, TN, 1996.
  • Bergerhof, G.; Berndt, M.; Brandenburg, K. Evaluation of Crystallographic Data with the Program DIAMOND. J. Res. Natl. Stand. Technol. 1996, 101, 221–225.
  • Hakimi, M.; Mardani, Z.; Moeini, K.; Schuh, E.; Mohr, F. Complexation to Cadmium(II) of a Tetradentate Ligand Resulting from the Condensation of 2-Pyridinecarbaldehyde with N-(2-Aminoethyl)Propane-1,3-Diamine. ZNB 2013, 68, 267–271. DOI: 10.5560/znb.2013-2294.
  • Marandi, F.; Moeini, K.; Rudbari Hadi, A. Sonochemical Synthesis and Characterization of Three Nano Zinc(II) Coordination Polymers; Precursors for Preparation of Zinc(II) Oxide Nanoparticles. ZNB 2016, 71b, 959–965.
  • Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds, 6th ed.; John Wiley: Hoboken, 2009; p 232.
  • Hakimi, M.; Moeini, K.; Mardani, Z.; Khorrami, F. Crystal Structure and Characterization of a New Eight Coordinated Cadmium Complex. J. Korean Chem. Soc. 2013, 57, 352–356. DOI: 10.5012/jkcs.2013.57.3.352.
  • Allen, F. H. The Cambridge Structural Database: A Quarter of a Million Crystal Structures and Rising. Acta Crystallogr. 2002, B58, 380–388.
  • Ratilainen, J.; Airola, K.; Fröhlich, R.; Nieger, M.; Rissanen, K. Synthesis of a Tetradentate Piperazine Ligand and a Structural Study of Its Coordination Compounds. Polyhedron 1999, 18, 2265–2273. DOI: 10.1016/S0277-5387(99)00117-5.
  • Qiang, Z.; Zhi, S.; Hao, Y.; Hui-Zhen, S. Coordination Modes of Polypyridyl Quinoxaline with Hg(II), Pb(II), Co(II) and Mn(II). Chinese J. Struct. Chem. 2016, 35, 69–76.
  • Wang, S.; Westmoreland, T. D. Correlation of Relaxivity with Coordination Number in Six-, Seven-, and Eight-Coordinate Mn(II) Complexes of Pendant-Arm Cyclen Derivatives. Inorg. Chem. 2009, 48, 719–727. DOI: 10.1021/ic8003068.
  • Louloudi, M.; Nastopoulos, V.; Gourbatsis, S.; Perlepes, S. P.; Hadjiliadis, N. Eight-Coordination in Nitrato Manganese(II) Complexes with Tetradentate di-Schiff Bases Derived from 2-Pyridyl Ketones: Preparation, Characterization and Catalytic Activity for Alkene Epoxidation. Inorg. Chem. Commun. 1999, 2, 479–483. DOI: 10.1016/S1387-7003(99)00127-6.
  • Hwang, I. C.; Ha, K. Diacetato[N,N'-Bis-(2-Pyridylmethyl-Idene)Cyclo-Hexane-1,2-Diamine]Manganese(II) Hexa-Hydrate. Acta Crystallogr. 2008, E64, m453.
  • Mikuriya, M.; Hatano, Y.; Asato, E. Variable Coordination Geometries in Manganese(II): Eight-, Seven-, and Six-Coordinate Mn(II) Complexes with Pyridyl-Containing Schiff-Base Ligands. Chem. Lett. 1996, 25, 849–850. DOI: 10.1246/cl.1996.849.
  • Baldeau, S. M.; Slinn, C. H.; Krebs, B.; Rompel, A. Rompel, A. Five Manganese(II) Complexes with Seven- or Eight-Coordinated Mn(II), Revealing Different Coordination Modes for the Nitrato Ligands. Inorg. Chim. Acta 2004, 357, 3295–3303. DOI: 10.1016/j.ica.2004.03.021.
  • Desiraju, G. R.; Steiner, T. The Weak Hydrogen Bond: In Structural Chemistry and Biology; Oxford University Press: Oxford, 2001.
  • Hakimi, M.; Mardani, Z.; Moeini, K.; Mohr, F.; Fernandes, M. A. Palladium, Cadmium and Mercury Complexes of 2-((2-((2-Hydroxyethyl)Amino)Ethyl)Amino)Cyclohexanol: Synthesis, Structural, Spectral and Solution Studies. Polyhedron 2014, 67, 27–35. DOI: 10.1016/j.poly.2013.08.065.
  • Hakimi, M.; Moeini, K.; Mardani, Z.; Mohr, F. Microwave-Assisted Template Synthesis of Diazacyclam-Based Macrocyclic Copper Complex and Forming Octahedral, Square Planar and Square Pyramidal Geometries by Ion Exchanging and Introducing a Novel 2D Square-Grid Copper–Mercury Coordination Polymer. Polyhedron 2014, 70, 92–100. DOI: 10.1016/j.poly.2013.12.033.
  • Marandi, F.; Moeini, K.; Arkak, A.; Mardani, Z.; Krautscheid, H. Docking Studies to Evaluate the Biological Activities of the Co(II) and Ni(II) Complexes Containing the Triazine Unit: Supported by Structural, Spectral, and Theoretical Studies. J. Coord. Chem. 2018, 71, 3893–3911. DOI: 10.1080/00958972.2018.1543871.
  • Webpage, https://www.drugs.com/mtm/doxorubicin.html (accessed July 19, 2018).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.