147
Views
1
CrossRef citations to date
0
Altmetric
Article

Enhancing mechanical properties of hydroxyapatite-reduced graphene oxide nanocomposites by increasing the spark plasma sintering temperature

ORCID Icon, , , &
Pages 1580-1590 | Received 21 Jun 2020, Accepted 18 Oct 2020, Published online: 30 Nov 2020

References

  • Elif, Ö.; Belma, Ö.; İlkay, Ş. Production of Biologically Safe and Mechanically Improved Reduced Graphene Oxide/Hydroxyapatite Composites. Mater. Res. Express 2017, 4, 015601. DOI: 10.1088/2053-1591/aa5464.
  • Yu, P.; Bao, R.-Y.; Shi, X.-J.; Yang, W.; Yang, M.-B. Self-Assembled High-Strength Hydroxyapatite/Grapheneoxide/Chitosan Composite Hydrogel for Bone Tissue Engineering. Carbohydr. Polym. 2017, 155, 507–515. DOI: 10.1016/j.carbpol.2016.09.001.
  • Dalgic, A. D.; Alshemary, A. Z.; Tezcaner, A.; Keskin, D.; Evis, Z. Silicate-Doped Nano-Hydroxyapatite/Graphene Oxide Composite Reinforced Fibrous Scaffolds for Bone Tissue Engineering. J. Biomater. Appl. 2018, 32, 1392–1405. DOI: 10.1177/0885328218763665.
  • Shin, Y. C.; Lee, J. H.; Jin, O. S.; Kang, S. H.; Hong, S. W.; Kim, B.; Park, J.-C.; Han, D.-W. Synergistic Effects of Reduced Graphene Oxide and Hydroxyapatite on Osteogenic Differentiation of MC3T3-E1 Preosteoblasts. Carbon 2015, 95, 1051–1060. DOI: 10.1016/j.carbon.2015.09.028.
  • Iafisco, M.; Di Foggia, M.; Bonora, S.; Prat, M.; Roveri, N. Adsorption and Spectroscopic Characterization of Lactoferrin on Hydroxyapatite Nanocrystals. Dalton Trans. 2011, 40, 820–827. DOI: 10.1039/c0dt00714e.
  • Lee, J. H.; Shin, Y. C.; Lee, S.-M.; Jin, O. S.; Kang, S. H.; Hong, S. W.; Jeong, C.-M.; Huh, J. B.; Han, D.-W. Enhanced Osteogenesis by Reduced Graphene Oxide/Hydroxyapatite Nanocomposites. Sci. Rep. 2015, 5, 18833. DOI: 10.1038/srep18833.
  • Ahmadi, A. H.; Nosrati, H.; Sarraf-Mamoory, R. Decreasing β- Three Calcium Phosphate Particle Size Using Graphite as Nucleation Sites and Diethylene Glycol as a Chemical Additive. J. Bioeng. Res. 2020, 1, 50–58.
  • Zhang, R.; Metoki, N.; Sharabani-Yosef, O.; Zhu, H.; Eliaz, N. Hydroxyapatite/Mesoporous Graphene/Single-Walled Carbon Nanotubes Freestanding Flexible Hybrid Membranes for Regenerative Medicine. Adv. Funct. Mater. 2016, 26, 7965–7974. DOI: 10.1002/adfm.201602088.
  • Ding, M.; Sahebgharani, N.; Musharavati, F.; Jaber, F.; Zalnezhad, E.; Yoon, G. H. Synthesis and Properties of HA/ZnO/CNT Nanocomposite. Ceram. Int. 2018, 44, 7746–7753. DOI: 10.1016/j.ceramint.2018.01.203.
  • Moldovan, M.; Prodan, D.; Sarosi, C.; Carpa, R.; Socaci, C.; Rosu, M.-C.; Pruneanu, S. Synthesis, Morpho-Structural Properties and Antibacterial Effect of Silicate Based Composites Containing Graphene Oxide/Hydroxyapatite. Mater. Chem. Phys. 2018, 217, 48–53. DOI: 10.1016/j.matchemphys.2018.06.055.
  • Canillas, M.; Rivero, R.; García-Carrodeguas, R.; Barba, F.; Rodríguez, M. A. Processing of Hydroxyapatite Obtained by Combustion Synthesis. Bol. Soc. Española Cerámica Vidrio 2017, 56, 237–242. DOI: 10.1016/j.bsecv.2017.05.002.
  • Guo, X.; Yan, H.; Zhao, S.; Li, Z.; Li, Y.; Liang, X. Effect of Calcining Temperature on Particle Size of Hydroxyapatite Synthesized by Solid-State Reaction at Room Temperature. Adv. Powder Technol. 2013, 24, 1034–1038. DOI: 10.1016/j.apt.2013.03.002.
  • Shikhanzadeh, M. Direct Formation of Nanophase Hydroxyapatite on Cathodically Polarized Electrodes. J. Mater. Sci. Mater. Med. 1998, 9, 67–72.
  • Jillavenkatesa, A.; Jillavenkatesa, A., Sr. Sol–Gel Processing of Hydroxyapatite. J. Mater. Sci. 1998, 33, 4111–4119. DOI: 10.1023/A:1004436732282.
  • Kuriakose, T. A.; Kalkura, S. N.; Palanichamy, M.; Arivuoli, D.; Dierks, K.; Bocelli, G.; Betzel, C. Synthesis of Stoichiometric Nano Crystalline Hydroxyapatite by Ethanol-Based Sol–Gel Technique at Low Temperature. J. Cryst. Growth 2004, 263, 517–523. DOI: 10.1016/j.jcrysgro.2003.11.057.
  • Sinitsyna, O. V.; Veresov, A. G.; Kovaleva, E. S.; Kolen’ko, Y. V.; Putlyaev, V. I.; Tretyakov, Y. D. Synthesis of Hydroxyapatite by Hydrolysis of α-Ca3(PO4)2. Russ. Chem. Bull. 2005, 54, 79–86. DOI: 10.1007/s11172-005-0220-9.
  • Liu, C.; Huang, Y.; Shen, W.; Cui, J. Kinetics of Hydroxyapatite Precipitation at pH 10 to 11. Biomaterials 2001, 22, 301–306. DOI: 10.1016/S0142-9612(00)00166-6.
  • Manuel, C. M.; Ferraz, M. P.; Monteiro, F. J. Synthesis of Hydroxyapatite and Tri Calcium Phosphate Nanoparticles Preliminary Studies. KEM 2003, 240-242, 555–558. DOI: 10.4028/www.scientific.net/KEM.240-242.555.
  • Yamashita, K.; Arashi, T.; Kitagaki, K.; Yamada, S.; Umegaki, T.; Ogawa, K. Preparation of Apatite Thin Films through Rfsputtering from Calcium Phosphate Glasses. J. Am. Ceram. Soc. 1994, 77, 2401–2407. DOI: 10.1111/j.1151-2916.1994.tb04611.x.
  • Kimura, I. Synthesis of Hydroxyapatite by Interfacial Reaction in a Multiple Emulsion. Res. Lett. Mater. Sci. 2007, 2007, 1–4. DOI: 10.1155/2007/71284.
  • Tas, A. C. Synthesis of Biomimetic Ca-Hydroxyapatite Powders at 37 Degrees C in Synthetic Body Fluids. Biomaterials 2000, 21, 1429–1438. DOI: 10.1016/s0142-9612(00)00019-3.
  • Nosrati, H.; Sarraf-Mamoory, R.; Le, D. Q. S.; Perez, M. C.; Bünger, C. E. Evaluation of Argon-Gas-Injected Solvothermal Synthesis of Hydroxyapatite Crystals Followed by High-Frequency Induction Heat Sintering. Cryst. Growth Des. 2020, 20, 3182–3189. DOI: 10.1021/acs.cgd.0c00048.
  • Nosrati, H.; Sarraf-Mamoory, R.; Le, D. Q. S.; Ahmadi, A. H.; Perez, M. C.; Bünger, C. E. Investigating the Mechanical Behavior of Hydroxyapatite-Reduced Graphene Oxide Nanocomposite under Different Loading Rates. Nano Express 2020, 1, 010053. DOI: 10.1088/2632-959X/ab98e2.
  • Peng, F.; Yu, X.; Wei, M. In Vitro Cell Performance on Hydroxyapatite Particles/Poly(l-Lactic Acid) Nanofibrous Scaffolds with an Excellent Particle along Nanofiber Orientation. Acta Biomater. 2011, 7, 2585–2592. DOI: 10.1016/j.actbio.2011.02.021.
  • Jevtić, M.; Mitrić, M.; ŠKapin, S.; JančAr, B.; Ignjatović, N.;.; Uskoković, D.; Crystal Structure of Hydroxyapatite Nanorods Synthesized by Sonochemical Homogeneous Precipitation. Cryst. Growth Des. 2008, 8, 2217–2222. DOI: 10.1021/cg7007304.
  • Costa, D. O.; Dixon, S. J.; Rizkalla, A. S. One- and Three-Dimensional Growth of Hydroxyapatite Nanowires during Sol–Gel–Hydrothermal Synthesis. ACS Appl. Mater. Interfaces 2012, 4, 1490–1499. DOI: 10.1021/am201735k.
  • Zhang, Y.; Lu, J.; Wang, J.; Yang, S.; Chen, Y. Synthesis of Nanorod and Needle-like Hydroxyapatite Crystal and Role of pH Adjustment. J. Cryst. Growth 2009, 311, 4740–4746. DOI: 10.1016/j.jcrysgro.2009.09.018.
  • Chandanshive, B. B.; Rai, P.; Rossi, A. L.; Ersen, O.; Khushalani, D. Synthesis of Hydroxyapatite Nanotubes for Biomedical Applications. Mater. Sci. Eng. C Mater. Biol. Appl. 2013, 33, 2981–2986. DOI: 10.1016/j.msec.2013.03.022.
  • Neelakandeswari, N.; Sangami, G.; Dharmaraj, N. Preparation and Characterization of Nanostructured Hydroxyapatite Using a Biomaterial. Syn. React. Inorg. Metal-Org. Nano-Metal Chem. 2011, 41, 513–516. DOI: 10.1080/15533174.2011.568434.
  • Li, M.; Xiong, P.; Yan, F.; Li, S.; Ren, C.; Yin, Z.; Li, A.; Li, H.; Ji, X.; Zheng, Y.; Cheng, Y. An Overview of Graphene-Based Hydroxyapatite Composites for Orthopedic Applications. Bioact. Mater. 2018, 3, 1–18. DOI: 10.1016/j.bioactmat.2018.01.001.
  • Gao, C.; Feng, P.; Peng, S.; Shuai, C. Carbon Nanotube, Graphene and Boron Nitride Nanotube Reinforced Bioactive Ceramics for Bone Repair. Acta Biomater. 2017, 61, 1–20. DOI: 10.1016/j.actbio.2017.05.020.
  • Lee, J.; Shin, Y.; Song, S.-J.; Cha, J.; Hong, S.; Lim, Y.-J.; Jeong, S.; Han, D.-W.; Kim, B. Dicalcium Phosphate Coated with Graphene Synergistically Increases Osteogenic Differentiation in Vitro. Coatings 2017, 8, 13. DOI: 10.3390/coatings8010013.
  • Zeng, Y.; Pei, X.; Yang, S.; Qin, H.; Cai, H.; Hu, S.; Sui, L.; Wan, Q.; Wang, J. Graphene Oxide/Hydroxyapatite Composite Coatings Fabricated by Electrochemical Deposition. Surf. Coat. Technol. 2016, 286, 72–79. DOI: 10.1016/j.surfcoat.2015.12.013.
  • Nosrati, H.; Sarraf-Mamoory, R.; Le, D. Q. S.; Bunger, C. E. Preparation of Reduced Graphene Oxide/Hydroxyapatite Nanocomposite and Evaluation of Graphene Sheets/Hydroxyapatite Interface. Diam. Relat. Mater. 2019, 100, 107561. DOI: 10.1016/j.diamond.2019.107561.
  • Baradaran, S.; Moghaddam, E.; Basirun, W. J.; Mehrali, M.; Sookhakian, M.; Hamdi, M.; Moghaddam, M. R. N.; Alias, Y. Mechanical Properties and Biomedical Applications of a Nanotube Hydroxyapatite-Reduced Graphene Oxide Composite. Carbon 2014, 69, 32–45. DOI: 10.1016/j.carbon.2013.11.054.
  • Chen, X.; Zhang, B.; Gong, Y.; Zhou, P.; Li, H. Mechanical Properties of Nanodiamond-Reinforced Hydroxyapatite Composite Coatings Deposited by Suspension Plasma Spraying. Appl. Surf. Sci. 2018, 439, 60–65. DOI: 10.1016/j.apsusc.2018.01.014.
  • Qu, Y.; He, F.; Yu, C.; Liang, X.; Liang, D.; Ma, L.; Zhang, Q.; Lv, J.; Wu, J. Advances on Graphene-Based Nanomaterials for Biomedical Applications. Mater. Sci. Eng. C Mater. Biol. Appl. 2018, 90, 764–780. DOI: 10.1016/j.msec.2018.05.018.
  • Nosrati, H.; Sarraf-Mamoory, R.; Le, D. Q. S.; Bünger, C. E. Enhanced Fracture Toughness of Three Dimensional Graphene- Hydroxyapatite Nanocomposites by Employing the Taguchi Method. Compos. Part B 2020, 190, 107928. DOI: 10.1016/j.compositesb.2020.107928.
  • Gadipelli, S.; Guo, Z. X. Graphene-Based Materials: Synthesis and Gas Sorption, Storage and Separation. Prog. Mater. Sci. 2015, 69, 1–60. DOI: 10.1016/j.pmatsci.2014.10.004.
  • Bai, R. G.; Ninan, N.; Muthoosamy, K.; Manickam, S. Graphene: A Versatile Platform for Nanotheranostics and Tissue Engineering. Prog. Mater. Sci. 2018, 91, 24–69. DOI: 10.1016/j.pmatsci.2017.08.004.
  • Shin, S. R.; Li, Y.-C.; Jang, H. L.; Khoshakhlagh, P.; Akbari, M.; Nasajpour, A.; Zhang, Y. S.; Tamayol, A.; Khademhosseini, A. Graphene-Based Materials for Tissue Engineering. Adv. Drug Deliv. Rev. 2016, 105, 255–274. DOI: 10.1016/j.addr.2016.03.007.
  • Stolle, M. D.; Park, S.; Zhu, Y.; An, J.; Ruoff, R. S. Graphene-Based Ultracapacitors. Nano Lett. 2008, 8, 3498–3502. DOI: 10.1021/nl802558y.
  • Nosrati, H.; Sarraf-Mamoory, R.; Le, D. Q. S.; Bunger, C. E. Fabrication of Gelatin/Hydroxyapatite/3D-Graphene Scaffolds by a Hydrogel 3D-Printing Method. Mater. Chem. Phys. 2020, 239, 122305. DOI: 10.1016/j.matchemphys.2019.122305.
  • Nosrati, H.; Mamoory, R. S.; Dabir, F.; Perez, M. C.; Rodriguez, M. A.; Svend Le, D. Q.; Bünger, C. E. In Situ Synthesis of Three Dimensional Graphene/Hydroxyapatite Nano Powders via Hydrothermal Process. Mater. Chem. Phys. 2019, 222, 251–255. DOI: 10.1016/j.matchemphys.2018.10.023.
  • Nosrati, H.; Mamoory, R. S.; Dabir, F.; Svend Le, D. Q.; Bünger, C. E.; Perez, M. C.; Rodriguez, M. A. Effects of Hydrothermal Pressure on in Situ Synthesis of 3D Graphene/Hydroxyapatite Nano Structured Powders. Ceram. Int. 2019, 45, 1761–1769. DOI: 10.1016/j.ceramint.2018.10.059.
  • Zhao, Y.; Sun, K.-N.; Wang, W.-L.; Wang, Y.-X.; Sun, X.-L.; Liang, Y.-J.; Sun, X.-N.; Chui, P.-F. Microstructure and Anisotropic Mechanical Properties of Graphene Nanoplatelet Toughened Biphasic Calcium Phosphate Composite. Ceram. Int. 2013, 39, 7627–7634. DOI: 10.1016/j.ceramint.2013.03.018.
  • Zhang, L.; Liu, W.; Yue, C.; Zhang, T.; Li, P.; Xing, Z.; Chen, Y. A Tough Graphene Nanosheet/Hydroxyapatite Composite with Improved in Vitro Biocompatibility. Carbon 2013, 61, 105–115. DOI: 10.1016/j.carbon.2013.04.074.
  • Kim, D.-Y.; Han, Y.-H.; Lee, J. H.; Kang, I.-K.; Jang, B.-K.; Kim, S. Characterization of Multiwalled Carbon Nanotube-Reinforced Hydroxyapatite Composites Consolidated by Spark Plasma Sintering. Biomed. Res. Int. 2014, 2014, 768254. DOI: 10.1155/2014/768254.
  • Klébert, S.; Balázsi, C.; Balázsi, K.; Bódis, E.; Fazekas, P.; Keszler, A. M.; Szépvölgyi, J.; Károly, Z. Spark Plasma Sintering of Graphene Reinforced Hydroxyapatite Composites. Ceram. Int. 2015, 41, 3647–3652. DOI: 10.1016/j.ceramint.2014.11.033.
  • Oliver, W.; Pharr, G. An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments. J. Mater. Res. 1992, 7, 1564–1583. DOI: 10.1557/JMR.1992.1564.
  • Nosrati, H.; Sarraf-Mamoory, R.; Le, D. Q. S.; Zolfaghari Emameh, R.; Canillas Perez, M.; Bünger, C. E. Improving the Mechanical Behavior of Reduced Graphene Oxide/Hydroxyapatite Nanocomposites Using Gas Injection into Powders Synthesis Autoclave. Sci. Rep. 2020, 10, 8552. DOI: 10.1038/s41598-020-64928-y.
  • Nosrati, H.; Mamoory, R. S.; Le, D. Q. S.; Bünger, C. E.; Emameh, R. Z.; Dabir, F. Gas Injection Approach for Synthesis of Hydroxyapatite Nanorods via Hydrothermal Method. Mater. Charact. 2020, 159, 110071. DOI: 10.1016/j.matchar.2019.110071.
  • Nosrati, H.; Sarraf-Mamoory, R.; Zolfaghari Emameh, R.; Le, D. Q. S.; Canillas Perez, M.; Bünger, C. E. Low Temperature Consolidation of Hydroxyapatite-Reduced Graphene Oxide Nano-Structured Powders. Mater. Adv. 2020, 1, 1337–1346. DOI: 10.1039/D0MA00212G.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.