776
Views
24
CrossRef citations to date
0
Altmetric
Reviews

Biosynthesis, antimicrobial spectra and applications of silver nanoparticles: current progress and future prospects

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1-19 | Received 19 Jul 2020, Accepted 18 Oct 2020, Published online: 22 Dec 2020

References

  • Dhillon, G. S.; Brar, S. K.; Kaur, S.; Verma, M. Green Approach for Nanoparticle Biosynthesis by Fungi: Current Trends and Applications. Crit. Rev. Biotechnol. 2012, 32, 49–73. DOI: 10.3109/07388551.2010.550568.
  • Ahmed, S.; Ahmad, M.; Swami, B. L.; Ikram, S. A Review on Plants Extract Mediated Synthesis of Silver Nanoparticles for Antimicrobial Applications: A Green Expertise. J. Adv. Res. 2016, 7, 17–28. DOI: 10.1016/j.jare.2015.02.007.
  • Mody, V. V.; Siwale, R.; Singh, A.; Mody, H. R. Introduction to Metallic Nanoparticles. J. Pharm. Bioallied Sci. 2010, 2, 282–289. DOI: 10.4103/0975-7406.72127.
  • Sharma, V. K.; Yngard, R. A.; Lin, Y. Silver Nanoparticles: Green Synthesis and Their Antimicrobial Activities. Adv. Colloid Interface Sci. 2009, 145, 83–96. DOI: 10.1016/j.cis.2008.09.002.
  • Daniel, M. C.; Astruc, D. Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology. Chem. Rev. 2004, 104, 293–346. DOI: 10.1021/cr030698+.
  • Mandal, D.; Bolander, M. E.; Mukhopadhyay, D.; Sarkar, G.; Mukherjee, P. The Use of Microorganisms for the Formation of Metal Nanoparticles and Their Application. Appl. Microbiol. Biotechnol. 2006, 69, 485–492.
  • Rafique, M.; Sadaf, I.; Rafique, M. S.; Tahir, M. B. A Review on Green Synthesis of Silver Nanoparticles and Their Applications. Artif. Cells Nanomed. Biotechnol. 2017, 45, 1272–1291. DOI: 10.1080/21691401.2016.1241792.
  • Agnihotri, S.; Mukherji, S.; Mukherji, S. Size-Controlled Silver Nanoparticles Synthesized over the Range 5–100 nm Using the Same Protocol and Their Antibacterial Efficacy. RSC Adv. 2014, 4, 3974–3983. [Database] DOI: 10.1039/C3RA44507K.
  • Tanwar, J.; Sharma, M.; Parmar, A.; Tehri, N.; Verma, N.; Gahlaut, A.; Hooda, V. Antibacterial Potential of Silver Nanoparticles against Multidrug Resistant Bacterial Isolates from Blood Cultures Inorg. Nano-Met. Chem. 2020, 50, 1–7.
  • Xu, Z. P.; Zeng, Q. H.; Lu, G. Q.; Yu, A. B. Inorganic Nanoparticles as Carriers for Efficient Cellular Delivery. Chem. Eng. Sci. 2006, 61, 1027–1040. [Database] DOI: 10.1016/j.ces.2005.06.019.
  • Gurunathan, S.; Park, J. H.; Han, J. W.; Kim, J. H. Comparative Assessment of the Apoptotic Potential of Silver Nanoparticles Synthesized by Bacillus tequilensis and Calocybe indica in MDA-MB-231 Human Breast Cancer Cells: Targeting p53 for Anticancer Therapy. Int. J. Nanomed. 2015, 10, 4203–4222.
  • Kang, Y. O.; Jung, J. Y.; Cho, D.; Kwon, O. H.; Cheon, J. Y.; Park, W. H. Antimicrobial Silver Chloride Nanoparticles Stabilized with Chitosan Oligomer for the Healing of Burns. Materials 2016, 9, 215–210. DOI: 10.3390/ma9040215.
  • Lateef, A.; Sunday, A. O.; Elegbede, J. A.; Akinola, P. O.; Akanni, E. O. Nanomedical Applications of Nanoparticles for Blood Coagulation Disor Ders. In Environmental Nanotechnology; Dasgupta, N.; Ranjan, S.; and Lichtfouse, E. Eds.; Springer: Switzerland, 2018; Vol. 1, pp 243–277.
  • Gurunathan, S.; Kalishwaralal, K.; Vaidyanathan, R.; Venkataraman, D.; Pandian, S. R.; Muniyandi, J.; Hariharan, N.; Eom, S. H. Biosynthesis, Purification and Characterization of Silver Nanoparticles Using Escherichia coli. Colloids Surf. B: Biointerfaces 2009, 74, 328–335. DOI: 10.1016/j.colsurfb.2009.07.048.
  • Korbekandi, H.; Iravani, S.; Abbasi, S. Production of Nanoparticles Using Organisms. Crit. Rev. Biotechnol. 2009, 29, 279–306. DOI: 10.3109/07388550903062462.
  • Akintayo, G. O.; Lateef, A.; Azeez, M. A.; Asafa, T. B.; Oladipo, I. C.; Badmus, J. A.; Ojo, S. A.; Elegbede, J. A.; Gueguim-Kana, E. B.; Beukes, L. S.; Yekeen, T. A. Synthesis, Bioactivities and Cytogenotoxicity of Animal Fur-Mediated Silver Nanoparticles. IOP Conf. Ser: Mater. Sci. Eng. 2020, 805, 012041. DOI: 10.1088/1757-899X/805/1/012041.
  • Lateef, A.; Akande, M. A.; Ojo, S. A.; Folarin, B. I.; Gueguim-Kana, E. B.; Beukes, L. S. Paper Wasp Nest-Mediated Biosynthesis of Silver Nanoparticles for Antimicrobial, Catalytic, Anti-Coagulant and Thrombolytic Applications. 3Biotech 2016, 6, 140.
  • Lateef, A.; Ojo, S. A.; Azeez, M. A.; Asafa, T. B.; Yekeen, T. A.; Akinboro, A.; Oladipo, I. C.; Gueguim-Kana, E. B.; Beukes, L. S. Cobweb as Novel Biomaterial for the Green and Eco-Friendly Synthesis of Silver Nanoparticles. Appl. Nanosci. 2016, 6, 863–874. DOI: 10.1007/s13204-015-0492-9.
  • Adelere, I. A.; Lateef, A. A Novel Approach to the Green Synthesis of Metallic Nanoparticles: The Use of Agro-Wastes, Enzymes and Pigments. Nanotechnol. Rev. 2016, 5, 567–587.
  • Lateef, A.; Ojo, S. A.; Joseph, A. Elegbede, The Emerging Roles of Arthropods and Their Metabolites in the Green Synthesis of Metallic Nanoparticles. Nanotechnol. Rev. 2013, 5, 601–622.
  • Ovais, M.; Khalil, A. T.; Islam, N. U.; Ahmad, I.; Ayaz, M.; Saravanan, M.; Shinwari, Z. K.; Mukherjee, S. Role of Plant Phytochemicals and Microbial Enzymes in Biosynthesis of Metallic Nanoparticles. Appl. Microbiol. Biotechnol. 2018, 102, 6799–6814. DOI: 10.1007/s00253-018-9146-7.
  • Durán, N.; Nakazato, G.; Seabra, A. B. Antimicrobial Activity of Biogenic Silver Nanoparticles, and Silver Chloride Nanoparticles: An Overview and Comments. Appl. Microbiol. Biotechnol. 2016, 100, 6555–6570. DOI: 10.1007/s00253-016-7657-7.
  • Gericke, M.; Pinches, A. Biological Synthesis of Metal Nanoparticles. Hydrometallurgy 2006, 83, 132–140. DOI: 10.1016/j.hydromet.2006.03.019.
  • Gericke, M.; Pinches, A. Microbial Production of Gold Nanoparticles. Gold Bull. 2006, 39, 22–28. DOI: 10.1007/BF03215529.
  • Adiguzel, A. O.; Adiguzel, S. K.; Mazmanci, B.; Tunçer, M.; Mazmanci, M. A. Silver Nanoparticle Biosynthesis from Newly Isolated Streptomyces Genus from Soil. Mater. Res. Express 2018, 5, 045402. DOI: 10.1088/2053-1591/aab861.
  • Pereira, L.; Dias, N.; Carvalho, J.; Fernandes, S.; Santos, C.; Lima, N. (2014) Synthesis, Characterization and Antifungal Activity of Chemically and Fungal-Produced Silver Nanoparticles against Trichophyton rubrum. J. Appl. Microbiol. 2014, 117, 1601–1613. DOI: 10.1111/jam.12652.
  • Abdellatif, K. F.; Abdelfattah, R. H.; El-Ansary, M. S. M. Green Nanoparticles Engineering on Root-Knot Nematode Infecting Eggplants and Their Effect on Plant DNA Modification. Iran. J. Biotechnol. 2016, 14, 250–259. DOI: 10.15171/ijb.1309.
  • Elbeshehy, E. K.; Elazzazy, A. M.; Aggelis, G. Silver Nanoparticles Synthesis Mediated by New Isolates of Bacillus spp., Nanoparticle Characterization and Their Activity against Bean Yellow Mosaic Virus and Human Pathogens. Front. Microbiol. 2015, 6, 453 DOI: 10.3389/fmicb.2015.00453.
  • Gopinath, P. M.; Dhanasekaran, D.; Ranjani, A.; Thajuddin, N.; Akbarsha, M. A.; Velmurugan, M.; Panneerselvam, A. Optimization of Sporicidal Activity and Environmental Bacillus Endospores Decontamination by Biogenic Silver nanoparticle. Future Microbiol. 2015, 10, 725–741. DOI: 10.2217/fmb.14.150.
  • Tehri, N.; Kaur, R.; Maity, M.; Chauhan, A.; Hooda, V.; Vashishth, A.; Kumar, G. Biosynthesis, Characterization, Bactericidal and Sporicidal Activity of Silver Nanoparticles Using the Leaves Extract of Litchi Chinensis. Prep. Biochem. Biotechnol. 2020, 50, 1–9.
  • Aina, D. A.; Owolo, O.; Lateef, A.; Aina, F. O.; Hakeem, A. S.; Adeoye-Isijola, M.; Okon, V.; Asafa, T. B.; Elegbede, J. A.; Olukanni, O. D.; Adediji, I. Biomedical Applications of Chasmanthera dependens Stem Extract Mediated Silver Nanoparticles as Antimicrobial, Antioxidant, Anticoagulant, Thrombolytic, and Larvicidal Agents. Karbala Int. J. Mod. Sci. 2019, 5, Article 2. DOI: 10.33640/2405-609X.1018.
  • Javaid, A.; Oloketuyi, S. F.; Khan, M. M.; Khan, F. Diversity of Bacterial Synthesis of Silver Nanoparticles. BioNanoSci. 2018, 8, 43–59. DOI: 10.1007/s12668-017-0496-x.
  • Rauwel, P.; Küünal, S.; Ferdov, S.; Rauwel, E. A Review on the Green Synthesis of Silver Nanoparticles and Their Morphologies Studied via TEM. Adv. Mater. Sci. Eng. 2015, 2015, 682749.
  • Zhang, X. F.; Liu, Z. G.; Shen, W.; Gurunathan, S. Silver Nanoparticles: Synthesis, Characterization, Properties, Applications, and Therapeutic Approaches. Int. J. Mol. Sci. 2016, 17, 1534. DOI: 10.3390/ijms17091534.
  • Deepak, V.; Umamaheshwaran, P. S.; Guhan, K.; Nanthini, R. A.; Krithiga, B.; Jaithoon, N. M.; Gurunathan, S. Synthesis of Gold and Silver Nanoparticles Using Purified URAK. Colloids Surf. B: Biointerfaces 2011, 86, 353–358. DOI: 10.1016/j.colsurfb.2011.04.019.
  • Zhang, W.; Qiao, X.; Chen, J. Synthesis of Silver Nanoparticles—Effects of Concerned Parameters in Water/Oil Microemulsion. Mater. Sci. Eng. B 2007, 142, 1–15. DOI: 10.1016/j.mseb.2007.06.014.
  • Mallick, K.; Witcomb, M. J.; Scurrell, M. S. Polymer Stabilized Silver Nanoparticles: A Photochemical Synthesis Route. J. Mater. Sci. 2004, 39, 4459–4463. DOI: 10.1023/B:JMSC.0000034138.80116.50.
  • Dhuper, S.; Panda, D.; Nayak, P. L. Green Synthesis and Characterization of Zero Valent Iron Nanoparticles from the Leaf Extract of Mangifera indica. Nano Trends: J. Nanotechnol. Appl. 2012, 13, 16–22.
  • Husen, A.; Siddiqi, K. S. Plants and Microbes Assisted Selenium Nanoparticles: characterization and Application. J. Nanobiotechnol. 2014, 12, 28.
  • Guilger-Casagrande, M.; de Lima, R. Synthesis of Silver Nanoparticles Mediated by Fungi: A Review. Front. Bioeng. Biotechnol. 2019, 7, 287.
  • Asmathunisha, N.; Kathiresan, K. A Review on Biosynthesis of Nanoparticles by Marine Organisms. Colloids Surf. B: Biointerfaces 2013, 103, 283–287. DOI: 10.1016/j.colsurfb.2012.10.030.
  • Prasad, R.; Pandey, R.; Barman, I. Engineering Tailored Nanoparticles with Microbes: Quo Vadis? WIREs Nanomed. Nanobiotechnol. 2016, 8, 316–330. DOI: 10.1002/wnan.1363.
  • Sharma, A.; Sharma, S.; Sharma, K.; Chetri, S. P.; Vashishtha, A.; Singh, P.; Kumar, R.; Rathi, B.; Agrawal, V. Algae as Crucial Organisms in Advancing Nanotechnology: A Systematic Review. J. Appl. Phycol. 2016, 28, 1759–1774. DOI: 10.1007/s10811-015-0715-1.
  • Fawcett, D.; Verduin, J. J.; Shah, M.; Sharma, S. B.; Poinern, G. E. J. A Review of Current Research into the Biogenic Synthesis of Metal and Metal Oxide Nanoparticles via Marine Algae and Seagrasses. J. Nanosci. 2017, 8013850, 1–15.
  • Durán, N.; Priscyla, D.; Marcato, P. D.; Alves, O.; De Souza, G.; Esposito, E. Mechanistic Aspects of Biosynthesis of Silver Nanoparticles by Several Fusarium oxysporum Strains. J. Nanobiotechnol. 2005, 3, 1–7.
  • Kalimuthu, K.; Babu, R. S.; Venkataraman, D.; Bilal, M.; Gurunathan, S. Biosynthesis of Silver Nanocrystals by Bacillus licheniformis. Colloids Surf. B: Biointerfaces 2008, 65, 150–153. DOI: 10.1016/j.colsurfb.2008.02.018.
  • Ganesh Babu, M. M.; Gunasekaran, P. Production and Structural Characterization of Crystalline Silver Nanoparticles from Bacillus cereus Isolate. Colloids Surf. B: Biointerfaces 2009, 74, 191–195.
  • Deljou, A.; Goudarzi, S. Green Extracellular Synthesis of the Silver Nanoparticles Using Thermophilic Bacillus sp. AZ1 and Its Antimicrobial Activity against Several Human Pathogenetic Bacteria. Iran. J. Biotechnol. 2016, 14, e1259. DOI: 10.15171/ijb.1259.
  • Oladipo, I. C.; Lateef, A.; Azeez, M. A.; Asafa, T. B.; Yekeen, T. A.; Akinboro, A.; Akinwale, A. S.; Gueguim-Kana, E. B.; Beukes, L. S. Green Synthesis and Antimicrobial Activities of Silver Nanoparticles Using Cell-Free Extracts of Enterococcus Species. Not. Sci. Biol. 2017, 9, 196–203. DOI: 10.15835/nsb929938.
  • Lateef, A.; Ojo, S. A.; Akinwale, A. S.; Azeez, L.; Gueguim-Kana, E. B.; Beukes, L. S. Biogenic Synthesis of Silver Nanoparticles Using Cell-Free Extract of Bacillus safensis LAU 13: antimicrobial, Free Radical Scavenging and Larvicidal Activities. Biologia 2015, 70, 1295–1306. DOI: 10.1515/biolog-2015-0164.
  • Shivaji, S.; Madhu, S.; Singh, S. Extracellular Synthesis of Antibacterial Silver Nanoparticles Using Psychrophilic Bacteria. Process. Biochem. 2011, 46, 1800–1807. DOI: 10.1016/j.procbio.2011.06.008.
  • Saxena, J.; Sharma, P. K.; Sharma, M. M.; Singh, A. Process Optimization for Green Synthesis of Silver Nanoparticles by Sclerotinia sclerotiorum MTCC 8785 and Evaluation of Its Antibacterial Properties. SpringerPlus 2016, 5, 861. DOI: 10.1186/s40064-016-2558-x.
  • Nayak, B. K.; Nanda, A.; Prabhakar, V. Biogenic Synthesis of Silver Nanoparticle from Wasp Nest Soil Fungus, Penicillium italicum and Its Analysis against Multi Drug Resistance Pathogens. Biocatal Agric. Biotechnol 2018, 16, 412–418. DOI: 10.1016/j.bcab.2018.09.014.
  • Chowdhury, S.; Basu, A.; Kundu, S. Green Synthesis of Protein Capped Silver Nanoparticles from Phytopathogenic Fungus Macrophomina phaseolina (Tassi) Goid with Antimicrobial Properties against Multidrug-Resistant Bacteria. Nanoscale Res. Lett. 2014, 9, 365 DOI: 10.1186/1556-276X-9-365.
  • Elegbede, J. A.; Lateef, A.; Azeez, M. A.; Asafa, T. B.; Yekeen, T. A.; Oladipo, I. C.; Adebayo, E. A.; Beukes, L. S.; Gueguim-Kana, E. B. Fungal Xylanases-Mediated Synthesis of Silver Nanoparticles for Catalytic and Biomedical Applications. IET Nanobiotechnol. 2018, 12, 857–863. DOI: 10.1049/iet-nbt.2017.0299.
  • Shu, M.; He, F.; Li, Z.; Zhu, X.; Ma, Y.; Zhou, Z.; Yang, Z.; Gao, F.; Zeng, M. Biosynthesis and Antibacterial Activity of Silver Nanoparticles Using Yeast Extract as Reducing and Capping Agents. Nanoscale Res. Lett. 2020, 15, 14. DOI: 10.1186/s11671-019-3244-z.
  • Soliman, H.; Elsayed, A.; Dyaa, A. Antimicrobial Activity of Silver Nanoparticles Biosynthesised by Rhodotorula sp. strain ATL72. Egypt J. Basic Appl. Sci. 2018, 5, 228–233.
  • Waghmare, S. R.; Mulla, M. N.; Marathe, S. R.; Sonawane, K. D. Ecofriendly Production of Silver Nanoparticles Using Candida utilis and Its Mechanistic Action against Pathogenic microorganisms. 3 Biotech 2015, 5, 33–38. DOI: 10.1007/s13205-014-0196-y.
  • Otari, S. V.; Patil, R. M.; Ghosh, S. J.; Thorat, N. D.; Pawar, S. H. Intracellular Synthesis of Silver Nanoparticle by Actinobacteria and Its Antimicrobial Activity. Spectrochim. Acta A 2015, 136, 1175–1180. DOI: 10.1016/j.saa.2014.10.003.
  • Abd-Elnaby, H. M.; Abo-Elala, G. M.; Abdel-Raouf, U. M.; Hamed, M. M. Antibacterial and Anticancer Activity of Extracellular Synthesized Silver Nanoparticles from Marine Streptomyces rochei MHM13. Egypt J. Aquat. Res. 2016, 42, 301–312. DOI: 10.1016/j.ejar.2016.05.004.
  • Kumar, P. S.; Balachandran, C.; Duraipandiyan, V.; Ramasamy, D.; Ignacimuthu, S.; Abdullah Al-Dhabi, N. Extracellular Biosynthesis of Silver Nanoparticle Using Streptomyces sp. 09 PBT 005 and Its Antibacterial and Cytotoxic Properties. Appl. Nanosci. 2015, 5, 169–180.
  • Manivasagan, P.; Venkatesan, J.; Senthilkumar, K.; Sivakumar, K.; Kim, S.-K. Biosynthesis, Antimicrobial and Cytotoxic Effect of Silver Nanoparticles Using a Novel Nocardiopsis sp. MBRC-1. Biomed Res. Int. 2013, 2013, 287638–287639. DOI: 10.1155/2013/287638.
  • Hamida, R. S.; Abdelmeguid, N. E.; Ali, M. A.; Bin-Meferij, M. M.; Khalil, M. I. Synthesis of Silver Nanoparticles Using a Novel Cyanobacteria Desertifilum sp. Extract: Their Antibacterial and Cytotoxicity Effects. Int. J. Nanomed. 2020, 15, 49–63. DOI: 10.2147/IJN.S238575.
  • Hamouda, R. A.; Hussein, M. H.; Abo-Elmagd, R. A.; Bawazir, S. S. Synthesis and Biological Characterization of Silver Nanoparticles Derived from the Cyanobacterium Oscillatoria Limnetica. Sci. Rep. 2019, 9, 13071. DOI: 10.1038/s41598-019-49444-y.
  • Husain, S.; Sardar, M.; Fatma, T. Screening of Cyanobacterial Extracts for Synthesis of Silver Nanoparticles. World J. Microbiol. Biotechnol. 2015, 31, 1279–1283. DOI: 10.1007/s11274-015-1869-3.
  • Aboelfetoh, E. F.; El-Shenody, R. A.; Ghobara, M. M. Eco-Friendly Synthesis of Silver Nanoparticles Using Green Algae (Caulerpa serrulata): Reaction Optimization, Catalytic and Antibacterial Activities. Environ. Monit. Assess. 2017, 189, 349. DOI: 10.1007/s10661-017-6033-0.
  • Yang, C.; Jung, S.; Yi, H. A Biofabrication Approach for Controlled Synthesis of Silver Nanoparticles with High Catalytic and Antibacterial Activities. Biochem. Eng. J. 2014, 89, 10–20. DOI: 10.1016/j.bej.2013.12.008.
  • Durgawale, P. P.; Phatak, R. S.; Hendre, A. S. Biosynthesis of Silver Nanoparticles Using Latex of Syandenium grantii Hook and Its Assessment of Antibacterial Activities. Dig. J. Nanomater. Biostruct. 2015, 10, 847–853.
  • Lakshmanan, G.; Sathiyaseelan, A.; Kalaichelvan, P. T.; Murugesan, K. Plant-Mediated Synthesis of Silver Nanoparticles Using Fruit Extract of Cleome viscosa L.: Assessment of Their Antibacterial and Anticancer Activity. Karbala Int. J. Mod. Sci. 2018, 4, 61–68.
  • Adedayo, A. I.; Lateef, A.; Oyeyemi, A. D.; Ramatu, A.; Usman, A. N. B. J. David, Biosynthesis of Silver Nanoparticles Using Aqueous Extract of Buchholzia coriacea (Wonderful Kola) Seeds and Their Antimicrobial Activities. Ann. Food Sci. Technol. 2018, 18, 671–679.
  • Adebayo, A. E.; Oke, A. M.; Lateef, A. Biosynthesis of Silver, Gold and Silver–Gold Alloy Nanoparticles Using Persea americana Fruit Peel Aqueous Extract for Their Biomedical Properties. Nanotechnol. Environ. Eng. 2019, 4, 13.
  • Vashishth, A.; Tehri, N.; Kumar, P. The Potential of Naturally Occurring Bacteria for the Bioremediation of Toxic Metals Pollution. Braz. J. Biol. Sci. 2019, 6, 39–51. DOI: 10.21472/bjbs.061205.
  • Vashishth, A.; Khanna, S. Toxic Heavy Metals Tolerance in Bacterial Isolates Based on Their Inducible Mechanism. Int. J. Novel Res. Life Sci. 2015, 2, 34–41.
  • Durán, N.; Marcato, P. D.; Durán, M.; Yadav, A.; Gade, A.; Rai, M. Mechanistic Aspects in the Biogenic Synthesis of Extracellular Metal Nanoparticles by Peptides, Bacteria, Fungi, and plants. Appl. Microbiol. Biotechnol. 2011, 90, 1609–1624. DOI: 10.1007/s00253-011-3249-8.
  • Mishra, S.; Dixit, S.; Soni, S. Methods of Nanoparticles Biosynthesis for Medical and Commercial Applications. Bio-Nanopart. Biosynth. Sustain. Biotechnol. Implic. 2015, 2015, 141–154.
  • Klaus, T.; Joerger, R.; Olsson, E.; Granqvist, C. G. Silver-Based Crystalline Nanoparticles, Microbially Fabricated. Proc. Natl. Acad. Sci. U. S. A. 1999, 96, 13611–13614. DOI: 10.1073/pnas.96.24.13611.
  • Haefeli, C.; Franklin, C.; Hardy, K. Plasmid-Determined Silver Resistance in Pseudomonas stutzeri Isolated from a Silver Mine. J. Bacteriol. 1984, 158, 389–392. DOI: 10.1128/JB.158.1.389-392.1984.
  • Ibrahim, E.; Fouad, H.; Zhang, M.; Zhang, Y.; Qiu, W.; Yan, C.; Li, B.; Mo, J.; Chen, J. Biosynthesis of Silver Nanoparticles Using Endophytic Bacteria and Their Role in Inhibition of Rice Pathogenic Bacteria and Plant Growth Promotion. RSC Adv. 2019, 9, 29293–29299. DOI: 10.1039/C9RA04246F.
  • Singh, H.; Du, J.; Singh, P.; Yi, T. H. Extracellular Synthesis of Silver Nanoparticles by Pseudomonas sp. THG-LS1.4 and Their Antimicrobial Application. J. Pharm. Anal. 2018, 8, 258–264. DOI: 10.1016/j.jpha.2018.04.004.
  • Elayaraja, S.; Zagorsek, K.; Li, F.; Xiang, J. In Situ Synthesis of Silver Nanoparticles into TEMPO-Mediated Oxidized Bacterial Cellulose and Their Antivibriocidal Activity against Shrimp Pathogens. Carbohydr. Polym. 2017, 166, 329–337. DOI: 10.1016/j.carbpol.2017.02.093.
  • Sastry, M.; Ahmad, A.; Khan, M. I.; Kumar, R. Biosynthesis of Metal Nanoparticles Using Fungi and Actinomycete. Curr. Sci. 2003, 85, 162–170.
  • Bérdy, J. Bioactive Microbial Metabolites. J. Antibiot. 2005, 58, 1–26. DOI: 10.1038/ja.2005.1.
  • Alghuthaymi, M. A.; Almoammar, H.; Rai, M.; Said-Galiev, E.; Abd-Elsalam, K. A. Myconanoparticles: Synthesis and Their Role in Phytopathogens Management. Biotechnol. Biotechnol. Equip. 2015, 29, 221–236. DOI: 10.1080/13102818.2015.1008194.
  • Noshad, A.; Iqbal, M.; Hetherington, C.; Wahab, H. Biogenic AgNPs—A Nano Weapon against Bacterial Canker of Tomato (BCT). Adv. Agric. 2020, 2020, 9630785.
  • Ammar, H. A.; El-Desouky, T. A. Green Synthesis of Nanosilver Particles by Aspergillus terreus HA1N and Penicillium expansum HA2N and Its Antifungal Activity against Mycotoxigenic Fungi. J. Appl. Microbiol. 2016, 121, 89–100. DOI: 10.1111/jam.13140.
  • Botham, K. M.; Mayes, P. A. Biologic Oxidation. In Harper’s Illustrared Biochemistry, 28th ed.; Lange-McGraw Hill: London, UK, 2006; p 47.
  • Okami, Y.; Beppu, T.; Ogawara, H. Biology of Actinomycetes. Japan Scientific Societies Press: Tokyo, 1988; pp 88–508.
  • Składanowski, M.; Wypij, M.; Laskowski, D.; Golińska, P.; Dahm, H.; Rai, M. Silver and Gold Nanoparticles Synthesized from Streptomyces sp. Isolated from Acid Forest Soil with Special Reference to Its Antibacterial Activity against Pathogens. J. Clust. Sci. 2017, 28, 59–79. DOI: 10.1007/s10876-016-1043-6.
  • Samundeeswari, A.; Dhas, S. P.; Nirmala, J.; John, S. P.; Mukherjee, A.; Chandrasekaran, N. Biosynthesis of Silver Nanoparticles Using Actinobacterium Streptomyces albogriseolus and Its Antibacterial Activity. Biotechnol. Appl. Biochem. 2012, 59, 503–507. DOI: 10.1002/bab.1054.
  • Barsanti, L.; Gualtieri, P. Algae: Anatomy, Biochemistry, and Biotechnology, 2nd ed; CRC Press: Boca Raton, FL, 2014.
  • Chisti, Y. Biodiesel from Microalgae. Biotechnol. Adv. 2007, 25, 294–306. DOI: 10.1016/j.biotechadv.2007.02.001.
  • Chisti, Y. Biodiesel from Microalgae Beats Bioethanol. Trends Biotechnol. 2008, 26, 126–131. DOI: 10.1016/j.tibtech.2007.12.002.
  • Grima, E. M.; Belarbi, E. H.; Fernández, F. A.; Medina, A. R.; Chisti, Y. Recovery of Microalgal Biomass and Metabolites: Process Options and Economics. Biotechnol. Adv. 2003, 20, 491–515. DOI: 10.1016/S0734-9750(02)00050-2.
  • Chisti, Y.; Moo-Young, M. Disruption of Microbial Cells for Intracellular Products. Enzym. Microb. Technol. 1986, 8, 194–204. [Database] DOI: 10.1016/0141-0229(86)90087-6.
  • Michalak, I.; Chojnacka, K. Algae as Production Systems of Bioactive Compounds. Eng. Life Sci. 2015, 15, 160–176. DOI: 10.1002/elsc.201400191.
  • Azizi, S.; Namvar, F.; Mahdavi, M.; Ahmad, M. B.; Mohamad, R. Biosynthesis of Silver Nanoparticles Using Brown Marine Macroalga, Sargassum muticum Aqueous Extract. Materials (Basel) 2013, 6, 5942–5950. DOI: 10.3390/ma6125942.
  • Sahoo, P. C.; Kausar, F.; Lee, J. H.; Han, J. I. Facile Fabrication of Silver Nanoparticle Embedded CaCO3 Microspheres via Microalgae-Templated CO2 Biomineralization: Application in Antimicrobial Paint Application. RSC Adv. 2014, 4, 32562–32569. DOI: 10.1039/C4RA03623A.
  • Khanna, P.; Kaur, A.; Goyal, D. Algae-Based Metallic Nanoparticles: Synthesis, Characterization and Applications. J. Microbiol. Methods 2019, 163, 105656. DOI: 10.1016/j.mimet.2019.105656.
  • Singh, V.; Bhatia, D.; Khatak, S.; Kumar, T.; Malik, D. K. Biological Eco-Friendly Synthesis of Nanoparticles and Their Applications. Biosci. Biotechnol. Res. Commun. 2019, 12, 134–139
  • Prasad, R. Synthesis of Silver Nanoparticles in Photosynthetic Plants. J. Nanoparticles 2014, 2014, 963961.
  • Das, R. K.; Pachapur, V. L.; Lonappan, L.; Naghdi, M.; Pulicharla, R.; Maiti, S.; Cledon, M.; Dalila, L. A.; Sarma, S. J.; Brar, S. K. Biological Synthesis of Metallic Nanoparticles: Plants, Animals and Microbial Aspects. Environ. Eng. 2017, 2, 18.
  • Chandran, S. P.; Chaudhary, M.; Pasricha, R.; Ahmad, A.; Sastry, M. Synthesis of Gold Nanotriangles and Silver Nanoparticles Using Aloe Vera Plant Extract. Biotechnol. Prog. 2006, 22, 577–583. DOI: 10.1021/bp0501423.
  • Karthiga, P. Preparation of Silver Nanoparticles by Garcinia mangostana Stem Extract and Investigation of the Antimicrobial Properties. Biotechnol. Res. Innov. 2018, 2, 30–36. DOI: 10.1016/j.biori.2017.11.001.
  • Behravan, M.; Hossein Panahi, A.; Naghizadeh, A.; Ziaee, M.; Mahdavi, R.; Mirzapour, A. Facile Green Synthesis of Silver Nanoparticles Using Berberis Vulgaris Leaf and Root Aqueous Extract and Its Antibacterial Activity. Int. J. Biol. Macromol. 2019, 124, 148–154. DOI: 10.1016/j.ijbiomac.2018.11.101.
  • Oluwafemi, O. S.; Mochochoko, T.; Leo, A. J.; Mohan, S. S.; Jumbam, D. N.; Songca, S. P. Microwave Irradiation Synthesis of Silver Nanoparticles Using Cellulose from Eichhornia crassipes Plant Shoot. Mater. Lett. 2016, 185, 576–579. DOI: 10.1016/j.matlet.2016.08.116.
  • Padalia, H.; Moteriya, P.; Chanda, S. Green Synthesis of Silver Nanoparticles from Marigold Flower and Its Synergistic Antimicrobial Potential. Arab. J. Chem. 2015, 8, 732–741. DOI: 10.1016/j.arabjc.2014.11.015.
  • Bar, H.; Bhui, D. K.; Sahoo, G. P.; Sarkar, P.; De, S. P.; Misra, A. Green Synthesis of Silver Nanoparticles Using Latex of Jatropha curcas. Colloid Surf. A 2009, 339, 134–139. DOI: 10.1016/j.colsurfa.2009.02.008.
  • Beg, M.; Maji, A.; Mandal, A. K.; Das, S.; Aktara, M. N.; Jha, P. K.; Hossain, M. Green Synthesis of Silver Nanoparticles Using Pongamia pinnata Seed: Characterization, Antibacterial Property, and Spectroscopic Investigation of Interaction with Human Serum Albumin. J. Mol. Recognit. 2017, 30, e2565. DOI: 10.1002/jmr.2565.
  • Devanesan, S.; AlSalhi, M. S.; Balaji, R. V.; Ranjitsingh, A. J. A.; Ahamed, A.; Alfuraydi, A. A.; AlQahtani, F. Y.; Aleanizy, F. S.; Othman, A. H. Antimicrobial and Cytotoxicity Effects of Synthesized Silver Nanoparticles from Punica granatum Peel Extract. Nanoscale Res. Lett. 2018, 13, 315. DOI: 10.1186/s11671-018-2731-y.
  • Shankar, S. S.; Ahmad, A.; Sastry, M. Geranium Leaf Assisted Biosynthesis of Silver Nanoparticles. Biotechnol. Prog. 2003, 19, 1627–1631. DOI: 10.1021/bp034070w.
  • Ahmad, F.; Ashraf, N.; Ashraf, T.; Zhou, R.-B.; Yin, D.-C. Biological Synthesis of Metallic Nanoparticles (MNPs) by Plants and Microbes: Their Cellular Uptake, Biocompatibility, and Biomedical applications. Appl. Microbiol. Biotechnol. 2019, 103, 2913–2935. DOI: 10.1007/s00253-019-09675-5.
  • Christopher, J. S. G.; Saswati, B.; Ezilrani, P. S. Optimization of Parameters for Biosynthesis of Silver Nanoparticles Using Leaf Extract of Aegle Marmelos. Braz. Arch. Biol. Technol. 2015, 58, 702–710. DOI: 10.1590/S1516-89132015050106.
  • Elamawi, R. M.; Al-Harbi, R. E.; Hendi, A. A. Biosynthesis and Characterization of Silver Nanoparticles Using Trichoderma longibrachiatum and Their Effect on Phytopathogenic Fungi. Egypt. J. Biol. Pest Control 2018, 28, 28.
  • Phanjom, P.; Ahmed, G. Effect of Different Physicochemical Conditions on the Synthesis of Silver Nanoparticles Using Fungal Cell Filtrate of Aspergillus oryzae (MTCC No. 1846) and Their Antibacterial Effects. Adv. Nat. Sci. Nanosci. Nanotechnol. 2017, 8, 1–13.
  • Masum, M. M. I.; Siddiqa, M. M.; Ali, K. A.; Zhang, Y.; Abdallah, Y.; Ibrahim, E.; Qiu, W.; Yan, C.; Li, B. Biogenic Synthesis of Silver Nanoparticles Using Phyllanthus emblica Fruit Extract and Its Inhibitory Action against the Pathogen Acidovorax oryzae Strain RS-2 of Rice Bacterial Brown Stripe. Front. Microbiol. 2019, 10, 820. DOI: 10.3389/fmicb.2019.00820.
  • Othman, A. M.; Elsayed, M. A.; Al-Balakocy, N. G.; Hassan, M. M.; Elshafei, A. M. Biosynthesis and Characterization of Silver Nanoparticles Induced by Fungal Proteins and Its Application in Different Biological Activities. J. Genet. Eng. Biotechnol. 2019, 17, 8.
  • Srikar, S. K.; Giri, D. D.; Pal, D. B.; Mishra, P. K.; Upadhyay, S. N. Green Synthesis of Silver Nanoparticles. Green Sustain. Chem. 2016, 6, 34–56. DOI: 10.4236/gsc.2016.61004.
  • Sowbarnika, R.; Anhuradha, S.; Preetha, B. Enhanced Antimicrobial Effect of Yeast Mediated Silver Nanoparticles Synthesized from Baker’s Yeast. Int. J. Nanosci. Nanotechnol. 2018, 14, 33–42. 33.
  • Thennarasan, S.; Murugesan, S. Biosynthesis of Silver Nano Particles Using Marine Brown Alga Lobophora Variegata and Assessment of Its Bactericidal Activity. Int. J. Nanosci. Nanotechnol. 2014, 5, 39–47.
  • Rajeshkumar, S.; Malarkodi, C.; Paulkumar, K.; Vanaja, M.; Gnanajobitha, G.; Annadurai, G. Algae Mediated Green Fabrication of Silver Nanoparticles and Examination of Its Antifungal Activity against Clinical Pathogens. Int. J. Met. 2014, 2014, 1–8. DOI: 10.1155/2014/692643.
  • Sahayaraja, K.; Rajesha, S.; Rathib, J. M. Silver Nanoparticles Biosynthesis Using Marine Alga Padina pavonica (Linn.) and Its Microbicidal Activity. Dig. J. Nanomater. Biostruct. 2012, 7, 1557–1567.
  • Azeez, M. A.; Lateef, A.; Asafa, T. B.; Yekeen, T. A.; Akinboro, A.; Oladipo, I. C.; Gueguim-Kana, E. B.; Beukes, L. S. Biomedical Applications of Cocoa Bean Extract-Mediated Silver Nanoparticles as Antimicrobial, Larvicidal and Anticoagulant Agents. J. Clust. Sci. 2017, 28, 149–164. DOI: 10.1007/s10876-016-1055-2.
  • Adebayo, E. A.; Ibikunle, J. B.; Oke, A. M.; Lateef, A.; Azeez, M. A.; Oluwatoyin, O.; Oluwa, A. V. A.; Blessing, O. T.; Comfort, O. O.; Adekunle, O. O.; et al. Antimicrobial and Antioxidant Activity of Silver, Gold and Silver-Gold Alloy Nanoparticles Phytosynthesized Using Extract of Opuntia ficus-indica. Rev. Adv. Mater. Sci. 2019, 58, 313–326. DOI: 10.1515/rams-2019-0039.
  • Gaikwad, S.; Ingle, A.; Gade, A.; Rai, M.; Falanga, A.; Incoronato, N. Antiviral Activity of Mycosynthesized Silver Nanoparticles against Herpes Simplex Virus and Human Parainfluenza Virus Type 3. Int. J. Nanomed. 2013, 8, 4303–4314.
  • Tomar, R.; Preet, S. Evaluation of Anthelmintic Activity of Biologically Synthesized Silver Nanoparticles against the Gastrointestinal Nematode, Haemonchus Contortus. J. Helminthol. 2017, 91, 454–461. DOI: 10.1017/S0022149X16000444.
  • Karthik, L.; Kumar, G.; Kirthi, A. V.; Rahuman, A. A.; Bhaskara Rao, K. V. Streptomyces sp. LK3 Mediated Synthesis of Silver Nanoparticles and Its Biomedical Application. Bioprocess Biosyst. Eng. 2014, 37, 261–267. DOI: 10.1007/s00449-013-0994-3.
  • Lateef, A.; Azeez, M. A.; Asafa, T. B.; Yekeen, T. A.; Akinboro, A.; Oladipo, I. C.; Azeez, L.; Ojo, S. A.; Gueguim-Kana, E. B.; Beukes, L. S.; et al. Cocoa Pod Husk Extract-Mediated Biosynthesis of Silver Nanoparticles: Its Antimicrobial, Antioxidant and Larvicidal Activities. J. Nanostruct. Chem. 2016, 6, 159–169. DOI: 10.1007/s40097-016-0191-4.
  • Wang, L. L.; Hu, C.; Shao, L. Q. The Antimicrobial Activity of Nanoparticles: Present Situation and Prospects for the Future. Int. J. Nanomed. 2017, 12, 1227–1249. DOI: 10.2147/IJN.S121956.
  • Saravanan, M.; Barik, S. K.; Ali, D. M.; Prakash, P.; Pugazhendhi, A. (2018) Synthesis of Silver Nanoparticles from Bacillus brevis (NCIM 2533) and Their Antibacterial Activity against Pathogenic Bacteria. Microb. Pathog. 2018, 116, 221–226. DOI: 10.1016/j.micpath.2018.01.038.
  • Ramalingam, B.; Parandhaman, T.; Das, S. K. Antibacterial Effects of Biosynthesized Silver Nanoparticles on Surface Ultrastructure and Nanomechanical Properties of Gram-Negative Bacteria Viz. Escherichia coli and Pseudomonas aeruginosa. ACS Appl. Mater. Interfaces 2016, 8, 4963–4976. DOI: 10.1021/acsami.6b00161.
  • Chaloupka, K.; Malam, Y.; Seifalian, A. M. Nanosilver as a New Generation of Nanoproduct in Biomedical Applications. Trends Biotechnol. 2010, 28, 580–588.
  • Musarrat, J.; Dwivedi, S.; Singh, B. R.; Al-Khedhairy, A. A.; Azam, A.; Naqvi, A. (2010) Production of Antimicrobial Silver Nanoparticles in Water Extracts of the Fungus Amylomyces rouxii Strain KSU-09. Bioresour. Technol. 2010, 101, 8772–8776. DOI: 10.1016/j.biortech.2010.06.065.
  • Vivek, M.; Kumar, P. S.; Steffi, S.; Sudha, S. Biogenic Silver Nanoparticles by Gelidiella acerosa Extract and Their Antifungal Effects. Avicenna J. Med. Biotechnol. 2011, 3, 143–148.
  • Velmurugan, N.; Kumar, G. G.; Han, S. S. Synthesis and Characterization of Potential Fungicidal Silver Nano-Sized Particles and Chitosan Membrane Containing Silver Particles. Iran Polym. J. 2009, 18, 383–392.
  • Lateef, A.; Ojo, S. A.; Oladejo, S. M. Anti-Candida, anti-Coagulant and Thrombolytic Activities of Biosynthesized Silver Nanoparticles Using Cell-Free Extract of Bacillus safensis LAU 13. Process Biochem. 2016, 51, 1406–1412. DOI: 10.1016/j.procbio.2016.06.027.
  • Avilala, J.; Golla, N. Antibacterial and Antiviral Properties of Silver Nanoparticles Synthesized by Marine Actinomycetes. Int. J. Pharm. Sci. 2019, 10, 1223–1228.
  • Haggag, E. G.; Elshamy, A. M.; Rabeh, M. A.; ; Gabr, N. M.; Salem, M.; Youssif, K. A.; Samir, A.; Muhsinah, A. B.; Alsayari, A.; Abdelmohsen, U. R. Antiviral Potential of Green Synthesized Silver Nanoparticles of Lampranthus coccineus and Malephora lutea. Int. J. Nanomed. 2019, 14, 6217–6219. DOI: 10.2147/IJN.S214171.
  • Tehri, N.; Kumar, N.; Raghu, H. V.; Vashishth, A. Biomarkers of Bacterial Spores Germination. Ann. Microbiol. 2018, 68, 513–523. DOI: 10.1007/s13213-018-1361-z.
  • Tehri, N.; Kumar N.; H, V.; Raghu; Shukla, R.; Vashishth, A. Microbial Spores: Concepts and Industrial Applications. In Microbial Bioprospecting for Sustainable Development; Panwar, J. S.; Sharma, D.; Sharma, N. R.; Kumar, G. Eds.; Springer: Singapore, 2018; pp 279–289.
  • Gopinath, P. M.; Ranjani, A.; Dhanasekaran, D.; Thajuddin, N.; Archunan, G.; Akbarsha, M. A.; Gulyás, B.; Padmanabhan, P. Multi-Functional Nano Silver: A Novel Disruptive and Theranostic Agent for Pathogenic Organisms in Real-Time. Sci. Rep. 2016, 6, 1–16.
  • Borase, H. P.; Patil, C. D.; Sauter, I. P.; Rott, M. B.; Patil, S. V. Amoebicidal Activity of Phytosynthesized Silver Nanoparticles and Their in Vitro Cytotoxicity to Human Cells. FEMS Microbiol. Lett. 2013, 345, 127–131. DOI: 10.1111/1574-6968.12195.
  • Barbosa, A.; Silva, L.; Ferraz, C. M.; Tobias, F. L.; de, Araújo, J. V.; Loureiro, B.; Braga, G.; Veloso, F.; Soares, F.; Fronza, M.; et al. Nematicidal Activity of Silver Nanoparticles from the Fungus Duddingtonia flagrans. Int. J. Nanomed. 2019, 14, 2341–2348. DOI: 10.2147/IJN.S193679.
  • Lee, S. H.; Jun, B. H. (2019) Silver Nanoparticles: Synthesis and Application for Nanomedicine. Int. J. Mol. Sci. 2019, 20, 865. DOI: 10.3390/ijms20040865.
  • Kim, S. H.; Lee, H. S.; Ryu, D. S.; Choi, S. J.; Lee, D. S. Antibacterial Activity of Silver-Nanoparticles against Staphylococcus aureus and Escherichia coli. Korean J. Microbiol. Biotechnol. 2011, 39, 77–85.
  • Dakal, T. C.; Kumar, A.; Majumdar, R. S.; Yadav, V. Mechanistic Basis of Antimicrobial Actions of Silver Nanoparticles. Front. Microbiol. 2016, 16, 1831.
  • Bedlovičová, Z.; Salayová, A. Green-Synthesized Silver Nanoparticles and Their Potential for Antibacterial Applications. In Bacterial Pathogenesis and Antibacterial Control; Kırmusaoğlu, S., Ed.; IntechOpen, London, UK, 2017.
  • Tang, S.; Zheng, J. Antibacterial Activity of Silver Nanoparticles: Structural Effects. Adv. Healthc. Mater. 2018, 7, 1701503. DOI: 10.1002/adhm.201701503.
  • Pal, S.; Tak, Y. K.; Song, J. M. Does the Antibacterial Activity of Silver Nanoparticles Depend on the Shape of the Nanoparticle? A Study of the Gram-Negative Bacterium Escherichia coli. Appl. Environ. Microbiol. 2007, 2007, 1712–1720.
  • Kim, S. W.; Kim, K. S.; Lamsal, K.; Kim, Y. J.; Kim, S. B.; Jung, M.; Sim, S. J.; Kim, H. S.; Chang, S. J.; Kim, J. K.; Lee, Y. S. An in Vitro Study of the Antifungal Effect of Silver Nanoparticles on Oak Wilt Pathogen Raffaelea sp. J. Microbiol. Biotechnol. 2009, 19, 760–764.
  • Ajitha, B.; Reddy, Y. A. K.; Reddy, P. S.; Jeon, H. J.; Ahn, C. W. Role of Capping Agents in Controlling Silver Nanoparticles Size, Antibacterial Activity and Potential Application as Optical Hydrogen Peroxide Sensor. RSC Adv. 2016, 6, 36171–36179. DOI: 10.1039/C6RA03766F.
  • Guilger-Casagrande, M.; de Lima, R. Synthesis of Silver Nanoparticles Mediated by Fungi: A Review. Front. Bioeng. Biotechnol. 2019, 7, 287 DOI: 10.3389/fbioe.2019.00287.
  • Lateef, A.; Akande, M. A.; Azeez, M. A.; Ojo, S. A.; Folarin, B. I.; Gueguim-Kana, E. B.; Beukes, L. S. Phytosynthesis of Silver Nanoparticles (AgNPs) Using Miracle Fruit Plant (Synsepalum dulcificum) for Antimicr Obial, Catalytic, Anti-Coagulant and Thrombolytic Applications. Nanotechnol. Rev. 2018, 5, 507–520.
  • Shukla, V. K.; Yadav, R. S.; Yadav, P.; Pandey, A. C. Green Synthesis of Nanosilver as a Sensor for Detection of Hydrogen Peroxide in Water. J. Hazard. Mater. 2012, 213–214, 161–166. DOI: 10.1016/j.jhazmat.2012.01.071.
  • Fayaz, A. M.; Balaji, K.; Girilal, M.; Kalaichelvan, P. T.; Venkatesan, R. Mycobased Synthesis of Silver Nanoparticles and Their Incorporation into Sodium Alginate Films for Vegetable and Fruit Preservation. J. Agric. Food Chem. 2009, 57, 6246–6252.
  • Daniel, S. C. G. K.; Sureshkumar, V.; Sivakumar, M. Nano Ice Based on Silver Nanoparticles for Fish Preservation. Int. J. Fish. Aquat. Stud. 2016, 4, 162–167.
  • Kamil, D.; Prameeladevi, T.; Ganesh, S.; Prabakharan, N.; Nareshkumar, R.; Thomas, S. P. Green Synthesis of Silver Nanoparticles by Entomopathogenic Fungus Beauveria bassiana and Their Bioefficacy against Mustard Aphid (Lipaphis erysimi Kalt.). Indian J. Exp. Biol. 2017, 55, 555–561.
  • Botcha, S.; Prattipati, S. D. Callus Extract Mediated Green Synthesis of Silver Nanoparticles, Their Characterization and Cytotoxicity Evaluation against MDA-MB-231 and PC-3 Cells. BioNanoScience 2020, 10, 11–22. DOI: 10.1007/s12668-019-00683-3.
  • Priyadharshini, R. I.; Prasannaraj, G.; Geetha, N.; Venkatachalam, P. Microwave-mediated extracellular synthesis of metallic silver and zinc oxide nanoparticles using macro-algae (Gracilaria edulis) extracts and its anticancer activity against human PC3 cell lines. Appl. Biochem. Biotechnol. 2014, 174, 2777–2790. DOI: 10.1007/s12010-014-1225-3.
  • Lateef, A.; Azeez, M. A.; Asafa, T. B.; Yekeen, T. A.; Akinboro, A.; Oladipo, I. C.; Azeez, L.; Ajibade, S. E.; Ojo, S. A.; Gueguim-Kana, E. B.; Beukes, L. S. Biogenic Synthesis of Silver Nanoparticles Using a Pod Extract of Cola nitida: Antibacterial, Antioxidant Activities and Application as a Paint Additive. J. Taibah. Univ. Sci. 2016, 10, 551–562. DOI: 10.1016/j.jtusci.2015.10.010.
  • Shanmugasundaram, T.; Radhakrishnan, M.; Gopikrishnan, V.; Pazhanimurugan, R.; Balagurunathan, R. A Study of the Bactericidal, Anti-Biofouling, Cytotoxic and Antioxidant Properties of Actinobacterially Synthesised Silver Nanoparticles. Colloids Surf. B: Biointerfaces 2013, 111, 680–687. DOI: 10.1016/j.colsurfb.2013.06.045.
  • Edison, T. N. J. I.; Atchudan, R.; Kamal, C.; Lee, Y. R. (2016) Caulerpa Racemosa: A Marine Green Alga for Eco-Friendly Synthesis of Silver Nanoparticles and Its Catalytic Degradation of Methylene Blue. Bioprocess Biosyst. Eng. 2016, 39, 1401–1408. DOI: 10.1007/s00449-016-1616-7.
  • Rasheed, T.; Bilal, M.; Li, C.; Nabee, F.; Khalid, M.; Iqbal, H. M. N. Catalytic Potential of Bio-Synthesized Silver Nanoparticles Using Convolvulus Arvensis Extract for the Degradation of Environmental Pollutants. J. Photochem. Photobiol. B 2018, 181, 44–52. DOI: 10.1016/j.jphotobiol.2018.02.024.
  • Nithya, R.; Ragunathan, R. Proceedings on Decolorization of the Dye Congo Red by Aspergillus niger Nanoparticle. Nation Semi. Anna Univer. Trichy, 2010.
  • Moharekar, V. K. S.; Moharekar, S.; Bora, P.; Daithankar, V.; Uplane, M. Exploitation of Aspergillus niger for Synthesis of Silver Nanoparticles and Their Use to Improve Shelf Life of Fruits and Toxic Dye Degradation. Int. J. Innov. Pharm. Sci. Res. 2014, 2, 1915–1927.
  • Azeez, L.; Lateef, A.; Adejumo, A. L.; Adeleke, J. T.; Adetoro, R. O.; Mustapha, Z. Adsorption Behaviour of Rhodamine B on Hen Feather and Corn Starch Functionalized with Green Synthesized Silver Nanoparticles (AgNPs) Mediated with Cocoa Pods Extracts. Chem. Afr. 2020, 3, 237–250. DOI: 10.1007/s42250-019-00113-7.
  • Raja, K.; Saravanakumar, A.; Vijayakumar, R. Efficient Synthesis of Silver Nanoparticles from Prosopis juliflora Leaf Extract and Its Antimicrobial Activity Using Sewage. Spectrochim. Acta A: Mol. Biomol. Spectrosc. 2012, 97, 490–494. DOI: 10.1016/j.saa.2012.06.038.
  • Moustafa, M. T. Removal of Pathogenic Bacteria from Wastewater Using Silver Nanoparticles Synthesized by Two Fungal Species. Water Sci. 2017, 31, 164–176. DOI: 10.1016/j.wsj.2017.11.001.
  • Balavigneswaran, C. K.; Kumar, T. S. J.; Packiaraj, R. M.; Prakash, S. Rapid Detection of Cr(VI) by AgNPs Probe Produced by Anacardium Occidentale Fresh Leaf Extracts. Appl. Nanosci. 2014, 4, 367–378. DOI: 10.1007/s13204-013-0203-3.
  • Uddin, I.; Ahmad, K.; Khan, A. A.; Kazmi, M. A. Synthesis of Silver Nanoparticles Using Matricaria Recutita (Babunah) Plant Extract and Its Study as Mercury Ions Sensor. Sens. Biosens. Res. 2017, 16, 62–67. DOI: 10.1016/j.sbsr.2017.11.005.
  • Shankar, S.; Chorachoo, J.; Jaiswal, L.; Voravuthikunchai, S. P. Effect of Reducing Agent Concentrations and Temperature on Characteristics and Antimicrobial Activity of Silver Nanoparticles. Mater. Lett. 2014, 137, 160–163. DOI: 10.1016/j.matlet.2014.08.100.
  • Jaiswal, L.; Shankar, S.; Rhim, J. H. Applications of Nanotechnology in Food Microbiology. Method Microbiol. 2019, 46, 43–60.
  • Rodino, S.; Butu, M.; Butu, A. Application of Biogenic Silver Nanoparticles for Berries Preservation. Dig. J. Nanomater. Biostruct. 2019, 14, 601–606.
  • Duhan, J. S.; Kumar, R.; Kumar, N.; Kaur, P.; Nehra, K.; Duhan, S. Nanotechnology: The New Perspective in Precision Agriculture. Biotechnol. Rep. 2017, 15, 11–23. DOI: 10.1016/j.btre.2017.03.002.
  • Mishra, S.; Singh, B. R.; Singh, A.; Keswani, C.; Naqvi, A. H.; Singh, H. B. Biofabricated Silver Nanoparticles Act as a Strong Fungicide against Bipolaris sorokiniana Causing Spot Blotch Disease in Wheat. PLoS One. 2014, 9, e97881. DOI: 10.1371/journal.pone.0097881.
  • Mishra, S.; Singh, B. R.; Naqvi, A. H.; Singh, H. B. Potential of Biosynthesized Silver Nanoparticles Using Stenotrophomonas sp. BHU-S7 (MTCC 5978) for Management of Soil-Borne and Foliar Phytopathogens. Sci. Rep. 2017, 7, 45154.
  • Sherkhane, A. S.; Suryawanshi, H. H.; Mundada, P. S.; Shinde, B. P. Control of Bacterial Blight Disease of Pomegranate Using Silver Nanoparticles. J. Nanomed. Nanotechnol. 2018, 9, 1–5.
  • Azeez, L.; Adejumo, A. L.; Lateef, A.; Adebisi, S. A.; Adetoro, R. O.; Adewuyi, S. O.; Tijani, K. O.; Olaoye, S. Zero-Valent Silver Nanoparticles Attenuate Cd and Pb Toxicities on Moringa oleifera via Immobilization and Induction of Phytochemicals. Plant Physiol. Biochem. 2019, 139, 283–292. DOI: 10.1016/j.plaphy.2019.03.030.
  • Azeez, L.; Lateef, A.; Adebisi, S. A. Silver Nanoparticles (AgNPs) Biosynthesized Using Pod Extract of Cola Nitida Enhances Antioxidant Activity and Phytochemical Composition of Amaranthus caudatus Linn. Appl. Nanosci. 2017, 7, 59–66. DOI: 10.1007/s13204-017-0546-2.
  • Roy, S.; Anantharaman, P. Biosynthesis of Silver Nanoparticle by Amphiroa Anceps (Lamarck) Decaisne and Its Biomedical and Ecological Implications. J. Nanomed. Nanotechnol. 2018, 9, 492.
  • Roy, S.; Anantharaman, P. Biosynthesis of Silver Nanoparticles by Sargassum ilicifolium (Turner) C. Agardh with Their Antimicrobial Activity and Potential for Seed Germination. J. Appl. Phys. Nanotechnol. 2018, 1, 1–9.
  • Rani, P. U.; Laxmi, K. P.; Vadlapudi, V.; Sreedhar, B. Phytofabrication of Silver Nanoparticles Using the Mangrove Associate, Hibiscus Tiliaceus Plant and Its Biological Activity against Certain Insect and Microbial Pests. J. Biopestic. 2016, 9, 167–179.
  • Antony, J. J.; Sithika, M. A. A.; Joseph, T. A.; Suriyakalaa, U.; Sankarganesh, A.; Siva, D.; Kalaiselvi, S.; Achiraman, S. In Vivo Antitumor Activity of Biosynthesized Silver Nanoparticles Using Ficus Religiosa as a Nanofactory in DAL Induced Mice model. Colloids Surf. B: Biointerfaces 2013, 108, 185–190. DOI: 10.1016/j.colsurfb.2013.02.041.
  • Kulkarni, R. R.; Shaiwale, N. S.; Deobagkar, D. N.; Deobagkar, D. D. Synthesis and Extracellular Accumulation of Silver Nanoparticles by Employing Radiation-Resistant Deinococcus radiodurans, Their Characterization, and Determination of Bioactivity. Int. J. Nanomed. 2015, 10, 963.
  • Joseph, S.; Mathew, B. Indigofera Tinctoria Leaf Extract Mediated Green Synthesis of Silver and Gold Nanoparticles and Assessment of Their Anticancer, Antimicrobial, Antioxidant and Catalytic Properties AU – Vijayan, Remya. Artif. Cells Nanomed. Biotechnol. 2018, 46, 861–871.
  • Naz, M.; Nasiri, N.; Ikram, M.; Nafees, M.; Qureshi, M. Z.; Ali, S.; Tricoli, A. Eco-Friendly Biosynthesis, Anticancer Drug Loading and Cytotoxic Effect of Capped Ag-Nanoparticles against Breast Cancer. Appl. Nanosci. 2017, 7, 793–802. DOI: 10.1007/s13204-017-0615-6.
  • Gahlawat, G.; Choudhury, A. R. A Review on the Biosynthesis of Metal and Metal Salt Nanoparticles by Microbes. RSC Adv. 2019, 9, 12944–12967. DOI: 10.1039/C8RA10483B.
  • Garg, S.; Chandra, A.; Mazumder, A.; Mazumder, R. Green Synthesis of Silver Nanoparticles Using Arnebia Nobilis Root Extract and Wound Healing Potential of Its Hydrogel. Asian J. Pharm. 2014, 8, 95–101. DOI: 10.4103/0973-8398.134925.
  • Sundaramoorthi, C.; Kalaivani, M.; Mathews, D. M.; Palanisamy, S.; Kalaiselvan, V.; Rajasekaran, A. Biosynthesis of Silver Nanoparticles from Aspergillus niger and Evaluation of Its Wound Healing Activity in Experimental Rat Model. Int. J. PharmTech Res. 2009, 1, 1523–1529.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.