106
Views
1
CrossRef citations to date
0
Altmetric
Articles

In vitro investigation of swelling triggered release of 5-fluorouracil from gelatin coated gold nanoparticles

, , , &
Pages 63-74 | Received 23 Jul 2020, Accepted 18 Oct 2020, Published online: 22 Dec 2020

References

  • Dobrowolska, P.; Krajewska, A.; Gajda-Rączka, M.; Bartosewicz, B.; Nyga, P.; Jankiewicz, B. J. Application of Turkevich Method for Gold Nanoparticles Synthesis to Fabrication of SiO2@Au and TiO2@Au Core-Shell Nanostructures. Materials 2015, 8, 2849–2862. DOI: 10.3390/ma8062849.
  • Brigger, I.; Dubernet, C.; Couvreur, P. Nanoparticles in Cancer Therapy and Diagnosis. Adv. Drug Deliv. Rev. 2012, 64, 24–36. DOI: 10.1016/j.addr.2012.09.006.
  • Kong, F. Y.; Zhang, J. W.; Li, R. F.; Wang, Z. X.; Wang, W. J.; Wang, W. Unique Roles of Gold Nanoparticles in Drug Delivery, Targeting and Imaging Applications. Molecules 2017, 22, 1445.
  • Garaiová1, Z.; Bolat, G.; Esteban-Fernández de Ávila, B.; Gong, H.; Sanz del Olmo, N.; Ortega, P.; Javier de la Mata, F.; Michlewska, S.; Wang, J.; Hianik, T. Combination of Ruthenium Dendrimers and Acoustically Propelled Gold Nanowires as a Platform for Active Intracellular Drug Delivery towards Breast Cancer Therapy. Clin. Oncol. Res. 2019, 2, 2.
  • Li, B.; Wang, Y.; He, J. Gold Nanorods-Based Smart Nanoplatforms for Synergic Thermotherapy and Chemotherapy of Tumor Metastasis. ACS Appl. Mater. Interfaces 2019, 11, 7800–7811. DOI: 10.1021/acsami.8b21784.
  • Lee, Y. J.; Park, Y. Green Synthetic Nanoarchitectonics of Gold and Silver Nanoparticles Prepared Using Quercetin and Their Cytotoxicity and Catalytic Applications. J. Nanosci. Nanotechnol. 2020, 20, 2781–2790. DOI: 10.1166/jnn.2020.17453.
  • Ariga, K.; Leong, D. T.; Mori, T. Nanoarchitectonics for Hybrid and Related Materials for Bio-Oriented Applications. Adv. Funct. Mater. 2018, 28, 1702905. DOI: 10.1002/adfm.201702905.
  • Cortez, M. L.; Lorenzo, A.; Marmisolle, W. A.; Bilderling, C. V.; Maza, E.; Pietrasanta, L.; Battaglini, F.; Ceolin, M.; Azzaroni, O. Highly-Organized Stacked Multilayers via Layer-by-Layer Assembly of Lipid-like Surfactants and Polyelectrolytes. Stratified Supramolecular Structures for (Bio)Electrochemical Nanoarchitectonics. Soft Matter 2018, 14, 1939–1952. DOI: 10.1039/c8sm00052b.
  • Zhao, L.; Zou, Q.; Yan, X. Self-Assembling Peptide-Based Nanoarchitectonics. BCSJ. 2019, 92, 70–79. DOI: 10.1246/bcsj.20180248.
  • Liang, X.; Li, L.; Tang, J.; Komiyama, M.; Ariga, K. Dynamism of Supramolecular DNA/RNA Nanoarchitectonics: From Interlocked Structures to Molecular Machines. BCSJ. 2020, 93, 581–603. DOI: 10.1246/bcsj.20200012.
  • Yu, H.; Tang, Z.; Li, M.; Song, W.; Zhang, D.; Zhang, Y.; Yang, Y.; Sun, H.; Deng, M.; Chen, X. Cisplatin Loaded Poly (L-Glutamic Acid)-g-Methoxy Poly(Ethylene Glycol) Complex Nanoparticles for Potential Cancer Therapy: Preparation, In Vitro and In Vivo Evaluation. J. Biomed. Nanotechnol. 2016, 12, 69–78. DOI: 10.1166/jbn.2016.2152.
  • Lomis, N.; Westfall, S.; Farahdel, L.; Malhotra, M.; Shum-Tim, D.; Prakash, S. Human Serum Albumin Nanoparticles for Use in Cancer Drug Delivery: Process Optimization and In Vitro Characterization. Nanomaterials 2016, 6, 116. DOI: 10.3390/nano6060116.
  • Patel, A. K.; Jain, A. P. Novel Drug Delivery System Based on Docetaxel-Loaded Gelatin Nanoparticles Treatment in Human Breast Cancer Cell Line MCF-7. Asian J. Pharm. 2017, 11, 647.
  • Patel, A. K.; Jain, A. P. Development of Novel Docetaxel-Loaded Gelatin Nanoparticles for Intravenous Application: Hemolytic Activity, Hematological Study, and Biodistribution Profile Or In Vivo Cancer Study. Int. J. Green Pharm. 2017, 11, 637.
  • Chiang, C. S.; Hu, S. H.; Liao, B. J.; Chang, Y. C.; Chen, S. Y. Enhancement of Cancer Therapy Efficacy by Trastuzumab-Conjugated and PH-Sensitive Nanocapsules with the Simultaneous Encapsulation of Hydrophilic and Hydrophobic Compounds. Nanomed. Nanotechnol. Bio. Med. 2014, 10, 99–107. DOI: 10.1016/j.nano.2013.07.009.
  • Unno, Y.; Shino, Y.; Kondo, F.; Igarashi, N.; Wang, G.; Shimura, R.; Yamaguchi, T.; Asano, T.; Saisho, H.; Sekiya, S., et al. Oncolytic Viral Therapy for Cervical and Ovarian Cancer Cells by Sindbis Virus AR339 Strain. Clin. Cancer Res. 2005, 11, 4553–4560. DOI: 10.1158/1078-0432.CCR-04-2610.
  • Rajendra, C. H.; Reddy, M. R.; Kumar, L. A.; Aparna, R. B.; Rao, P. V.; Kumar, K. J. Study of Lipid Changes in Patients with Carcinoma Stomach. Indian J. Public Health Res. Dev. 2011, 2, 28–29.
  • Drake, C. G.; Jaffee, E.; Pardoll, D. M. Mechanisms of Immune Evasion by Tumors. Adv. Immunol. 2006, 90, 51–81.
  • Jia, Z.; Dequan, Z.; Fenwing, T.; Guoqiang, J.; Ying, L.; Fuxin, D. Preparation of Thermosensitive Chitosan Formulations Containing 5-FluorouraciVPoly-3-Hydroxybutyrate Microparticles Used as Injectable Drug Delivery System. Chinese J. Chem. Eng. 2006, 14, 235–241.
  • Denkbas, E. B.; Seyyal, M.; Piskin, E. Implantable 5-Fluorouracil Loaded Chitosan Scaffolds Prepared by Wet Spinning. J. Membr. Sci. 2000, 172, 33–38. DOI: 10.1016/S0376-7388(00)00314-8.
  • Li, W.; Ba, H.; Huang, P.; Zheng, A.; Yang, X. Preparation and Properties of 5-Fluorouracil-Loaded Chitosan Microspheres for the Intranasal Administration. Drug Res. (Stuttg) 2018, 68, 673–679. DOI: 10.1055/a-0586-8406.
  • Azarmi, S.; Huang, Y.; Chen, H.; McQuarrie, S.; Abrams, D.; Roa, W.; Finlay, W. H.; Miller, G. G.; Löbenberg, R. Optimization of a Two-Step Desolvation Method for Preparing Gelatin Nanoparticles and Cell Uptake Studies in 143B Osteosarcoma Cancer Cells. J. Pharm. Pharmaceut. Sci. 2006, 9, 124–132.
  • Marois, Y.; Chakfé, N.; Deng, X.; Marois, M.; How, T.; King, M. W.; Guidoin, R. Carbodiimide Cross-Linked Gelatin: A New Coating for Porous Polyester Arterial Prostheses. Biomaterials 1995, 16, 1131–1139. DOI: 10.1016/0142-9612(95)93576-Y.
  • Yamamoto, M.; Ikada, Y.; Tabata, Y . Controlled Release of Growth Factors Based on Biodegradation of Gelatin Hydrogel. J. Biomater. Sci. Polym. Ed. 2001, 12, 77–88. DOI: 10.1163/156856201744461.
  • Rauchwerger, D. R.; Firby, P. S.; Hedley, D. W.; Moore, M. J. Equilibrative-Sensitive Nucleoside Transporter and Its Role in Gemcitabine Sensitivity. Cancer Res. 2000, 60, 6075–6079.
  • Yazid, H.; Adnan, R.; Farrukh, M. A. Gold Nanoparticles Supported on Titania for the Reduction of P-Nitrophenol. Indian J. Chem. 2013, 52, 184–191.
  • Kim, J. H.; Lee, T. R . Hydrogel-Templated Growth of Large Gold Nanoparticles: Synthesis of Thermally Responsive Hydrogel-Nanoparticle Composites. Langmuir 2007, 23, 6504–6509. DOI: 10.1021/la0629173.
  • Cascone, M. G.; Lazzeri, L.; Carmignani, C.; Zhouhai, Z. Gelatin Nanoparticles Produced by a Single w/o Emulsion as Delivery System for Methotrexate. J. Mater. Sci. Mater. Med. 2002, 13, 523–526. DOI: 10.1023/A:1014791327253.
  • Likhitkar, S.; Bajpai, A. K. Investigation of Magnetically Enhanced Swelling Behavior of Superparamagnetic Starch Nanoparticles. Bull. Mater. Sci. 2013, 36, 15–24.
  • Davidson, G. W. R.; Peppas, N. A. Solute and Penetrant Diffusion in Swellable Polymers Relaxation Controlled Transport in P(HEMA-Co MMA) Copolymers. J. Control Release 1986, 3, 243–258. DOI: 10.1016/0168-3659(86)90096-9.
  • Bajpai, A. K.; Saini, R. Preparation and Characterization of Biocompatible Spongy Cryogels of Poly(Vinylalcohol) – Gelatin and Study of Watersorption Behavior. Polym. Int. 2005, 54, 796–806. DOI: 10.1002/pi.1773.
  • Wang, L.-F.; Chen, W. B.; Chen, T.-Y.; Lu, S. C., et al . Effects of the Preparation Methods of Hydroxypropyl Methylcellulose/Polyacrylic Acid Blended Films on Drug Release. J. Biomater. Sci. Polym. Ed. 2003, 14, 27–44. DOI: 10.1163/15685620360511128.
  • Rokhade, A. P.; Shelke, N. B.; Patil, S. A.; Aminabhavi, T. M. Novel Hydrogel Microspheres of Chitosan and Pluronic F-127 for Controlled Release of 5-Fluorouracil. J. Microencapsul. 2007, 24, 274–288. DOI: 10.1080/02652040701281365.
  • Yasuda, H.; Lamaze, C.; Ikenberry, L. D. Permeability of Solutes through Hydrated Polymer Membranes. Makromol. Chem. 1968, 118, 19–35. DOI: 10.1002/macp.1968.021180102.
  • Bajpai, A. K.; Rajpoot, M. Release and Diffusion of Sulfamethoxazole through Acrylamide-Based Hydrogel. J. Appl. Polym. Sci. 2001, 81, 1238–1247. DOI: 10.1002/app.1546.
  • Bajpai, A. K.; Bhanu, S. Dynamics of Controlled Release of Heparin from Swellable Crosslinked Starch Microspheres. J. Mater. Sci. Mater. Med. 2007, 18, 1613–1621. DOI: 10.1007/s10856-007-3020-y.
  • Billia, A.; Carelli, V.; Col, G. D. Biomedical Applications of Hydrogels. Int. J. Pharm. 1996, 130, 83.
  • Graham, N. B.; Zalfiquar, A. Swelling Dynamics of a Molecular Hydrophilic Network and Evaluation of Its Potential for Controlled Release of Agrochemicals. React. Funct. Polym. 2002, 53, 125–141.
  • Nosaka, A. Y.; Tanzawa, H. J. H-NMR Studies on Water in Methac-Rylate Hydrogels. J. Appl. Polym. Sci. 1991, 43, 1165.
  • Masaro, L.; Zhu, X. X. Physical Models of Diffusion for Polymer Solutions, Gels and Solids. Prog. Polym. Sci. 1999, 24, 731–775. [Database] DOI: 10.1016/S0079-6700(99)00016-7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.