214
Views
0
CrossRef citations to date
0
Altmetric
Articles

Synthesis and characterization of cryptomelane (α-MnO2) nanoparticles: Influence of phthalic acid adsorption and oxidation on the mineral structure

, , &
Pages 42-52 | Received 31 Jul 2020, Accepted 01 Dec 2020, Published online: 28 Dec 2020

References

  • Gao, T.; Norby, P. Frame Stability of Tunnel-Structured Cryptomelane Nanofibers: The Role of Tunnel Cations. Eur. J. Inorg. Chem. 2013, 4948–4957. DOI: 10.1002/ejic.201300602.
  • Post, J. E.; von Dreele, R. B.; Buseck, P. T. Symmetry and Cation Displacements in Hollandites: Structure Refinements of Hollandite, Cryptomelane and Priderite. Acta Crystallogr. B Struct. Sci. 1982, 38, 1056–1065. DOI: 10.1107/S0567740882004968.
  • Sandler, S. I. Chemical, Biochemical and Engineering Thermodynamics, 4th ed. John Wiley: Hoboken, NJ, 2006; pp 841–843.
  • Hernández, W. Y.; Centeno, M. A.; Romero-Sarria, F.; Ivanova, S.; Montes, M.; Odriozola, J. A. Modified Cryptomelane-Type Manganese Dioxide Nanomaterials for Preferential Oxidation of CO in the Presence of Hydrogen. Catal. Today 2010, 157, 160–165. DOI: 10.1016/j.cattod.2010.03.010.
  • Hou, J.; Liu, L.; Li, Y.; Mao, M.; Lv, H.; Zhao, X. Tuning the K+ Concentration in the Tunnel of OMS-2 Nanorods Leads to a Significant Enhancement of the Catalytic Activity for Benzene Oxidation. Environ. Sci. Technol. 2013, 47, 13730–13736. DOI: 10.1021/es403910s.
  • Gao, T.; Glerup, M.; Krumeich, F.; Nesper, R.; Fjellvag, H.; Norby, P. Microstructures and Spectroscopic Properties of Cryptomelane-Type Manganese Dioxide Nanofibers. J. Phys. Chem. C. 2008, 112, 13134–13140. DOI: 10.1021/jp804924f.
  • Singh, M.; Thanh, D. N.; Ulbrich, P.; Strnadová, N.; Ŝtĕphánek, F. Synthesis, Characterization and Study of Arsenate Adsorption from Aqueous Solution by α- and δ-Phase Manganese Dioxide Nanoadsorbents. J. Solid State Chem 2010, 183, 279–286. DOI: 10.1016/j.jssc.2010.09.023.
  • Li, H.; Liu, F.; Zhu, M.; Feng, X.; Zhang, J.; Yin, H. Structure and Properties of Co-Doped Cryptomelane and Its Enhanced Removal of Pb2+ and Cr3+ from Wastewater. J. Environ. Sci. 2015, 34, 77–85. DOI: 10.1016/j.jes.2015.02.006.
  • Zheng, H.; Feng, C.; Kim, S.-J.; Yin, S.; Wu, H.; Wang, S.; Li, S. Synthesis and Electrochemical Properties of KMnO8O16 Nanorods for Lithium Ion Batteries. Electrochim. Acta 2013, 88, 225–230. DOI: 10.1016/j.physb.2013.02.002.
  • Poyraz, A. S.; Huang, J.; Pelliccione, C. J.; Tong, X.; Cheng, S.; Wu, L.; Zhu, Y.; Marschilok, A. C.; Takeuchi, K. J.; Takeuchi, E. S. Synthesis of Cryptomelane Type α-MnO2 (KxMn8O16) Cathode Materials with Tunable K+ Content: The Role of Tunnel Cation Concentration on Electrochemistry. J. Mater. Chem. A. 2017, 5, 16914–16928. DOI: 10.1039/c7ta03476h.
  • Wang, X.; Li, Y. Selected-Control Hydrothermal Synthesis of Alpha- and Beta-MnO(2) Single Crystal Nanowires. J. Am. Chem. Soc. 2002, 124, 2880–2881. DOI: 10.1021/ja0177105.
  • Yang, L.-X.; Zhu, Y.-J.; Wang, W.-W.; Tong, H.; Ruan, M.-L. Synthesis and Formation Mechanism of Nanoneedles and Nanorods of Manganese Oxide Octahedral Molecular Sieve Using an Ionic Liquid. J. Phys. Chem. B. 2006, 110, 6609–6614. DOI: 10.1021/jp0569739.
  • Lucio-Ortiz, C.; De la Rosa, J. R.; Ramirez, A. H.; De Los Reyes Hereda, J. A.; del Angel, P.; Nuñoz- Aguirre, S.; De León-Covián, L. M. Synthesis and Characterization of Fe Doped Mesoporous Al2O3 by Sol-Gel Method and Its Use in Trichloethylene Combustion. J. Sol-Gel Sci. Technol. 2011, 58, 374–384. DOI: 10.1007/s10971-011-2403-1.
  • Hengsawad, T.; Jindarat, T.; Resasco, D. E.; Jongpatiwut, S. Synergitic Efect of Oxygen Vacancies and Highly Dispersed Pd Nanoparticles over Pd-Loaded TiO2 Prepared by Single-Step Sol-Gel Process for Deoxygenation of Triglycerides. Appl. Catal. A 2018, 566, 74–86. DOI: 10.1016/j.apcata.2018.08.007.
  • Huang, H.; Sithambaram, S.; Chen, C.-H.; Kithongo, C. K. O.; Xu, L.; Iyer, A.; Garces, H. F.; Suib, S. L. Microwave-Assisted Hydrothermal Synthesis of Cryptomelane-Type Octahedral Molecular Sieves (OMS-2) and Their Catalytic Studies. Chem. Mater. 2010, 22, 3664–3669. DOI: 10.1021/cm100220g.
  • Sun, H.; Qiu, G.; Wang, Y.; Feng, X.; Yin, H.; Liu, F. Effects of Co and Ni co-Doping on the Physicochemical Properties of Cryptomelane and Its Enhanced Performance on Photocatalytic Degradation of Phenol. Mater. Chem. Phys. 2014, 148, 783–789. DOI: 10.1016/j.matchemphys.2014.08.049.
  • Sun, H.; Liu, Z.; Chen, S.; Quan, X. The Role of Lattice Oxygen on the Activity and Selectivity of the OMS-2 Catalyst for the Total Oxidation of Toluene. Chem. Engineer. J. 2015, 270, 58–65. DOI: 10.1016/j.cej.2015.02.017.
  • Bernard, S.; Chazal, P.; Mazet, M. Removal of Organic Compounds by Adsorption on Pyrolusite (β-MnO2). Water Res. 1997, 31, 1216–1222. DOI: S0043-1354(96)00149-2.
  • Schurz, F.; Bauchert, J. M.; Merker, T.; Schleid, T.; Hasse, H.; Gläser, R. Octahedral Molecular Sieves of the Type K-OMS-2 with Different Particle Sizes and Morphologies: Impact on the Catalytic Properties in the Aerobic Partial Oxidation of Benzyl Alcohol. Appl. Catal. A 2009, 355, 42–49. DOI: 10.1016/j.apcata.2008.11.014.
  • He, L.; Gielen, G.; Bolan, N. S.; Zhang, X.; Qin, H.; Huang, H.; Wang, H. Contamination and Remediation of Phthalic Acid Esters in Agricultural Soils in China: A Review. Agron. Sustain. Dev. 2015, 35, 519–534. DOI: 10.1007/s13593-014-0170-1.
  • Net, S.; Sempéré, R.; Delmont, A.; Paluselli, A.; Ouddane, B. Occurrence, Fate, Behavior and Ecotoxicological State of Phthalates in Different Environmental Matrices. Environ. Sci. Technol. 2015, 49, 4019–4035. DOI: 10.1021/es505233b.
  • Schwertmann, U.; Carlson, L. The pH-Dependent Transformation of Schwertmannite to Goethite at 25 °C. Clay Miner. 2005, 40, 63–66. DOI: 10.1180/0009855054010155.
  • Tejedor-Tejedor, M. I.; Yost, E. C.; Anderson, M. A. Characterization of Benzoic and Phenolic Complexes at the Goethite/Aqueous Solution Interface Using Cylindrical Internal Reflection Fourier Transform Infra Red Spectroscopy. 2. Bonding Structures. Langmuir 1992, 8, 525–533. DOI: 10.1021/la00038a036.
  • Tunesi, S.; Anderson, M. A. Surface Effects in Photochemistry: An in Situ Cylindrical Internal reflection-Fourier Transform Infrared Investigation of the Effect of Ring Substituents on Chemisorption onto TiO2 Ceramic Membranes. Langmuir 1992, 8, 487–495. DOI: 10.1021/la00038a030.
  • Persson, P.; Nordin, J.; Rosenqvist, J.; Lövgren, L.; Öhman, L.-O.; Sjöberg, S. Comparison of the Adsorption of o-Phthalate on Boehmite (Gamma-AlOOH), Aged gamma-Al2O3, and Goethite (alpha-FeOOH)). J Colloid Interface Sci. 1998, 206, 252–266. DOI: 0021-9797/98.
  • Dobson, K. D.; McQuillan, A. J. In Situ Infrared Spectroscopic Analysis of the Adsorption of Aromatic Carboxylic Acids to TiO2, ZrO2, Al2O3, and Ta2O5 from Aqueous Solutions. Spectrochim. Acta A 2000, 56, 557–565. DOI: 10.1016/S1386-1425(99)00154-7.
  • Hwang, Y. S.; Liu, J.; Lenhart, J. J.; Hadad, C. M. Surface Complexes of Phthalic Acid at the Hematite/Water Interface. J Colloid Interface Sci. 2007, 307, 124–134. DOI: 10.1016/j.jcis.2006.11.020.
  • Cheney, M. A.; Birkner, N. R.; Ma, L.; Hartmann, T.; Bhowmik, P. K.; Hodge, V. F.; Steinberg, S. M. Synthesis and Characterization of Inorganic Double Helices of Cryptomelane Nanomaterials. Colloid Surface A 2006, 289, 185–192. DOI: 10.1016/j.colsurfa.2006.04.042.
  • Naidja, A.; Siffert, B. Oxidative Decarboxylation of Isocitric Acid in the Presence of Montmorillonite. Clay Miner. 1990, 25, 27–37. DOI: 10.1180/claymin.1990.025.1.04.
  • Naidja, A.; Huang, P. M. Effect of Diffusion on Measuring Oxygen Consumption in Oxidation Reactions with Polarographic Membrane-Covered Probe. Analyst 1999, 124, 343–347. DOI: 10.1039/a807467d.
  • Anschutz, P.; Dedieu, K.; Desmazes, F.; Chaillou, G. Speciation, Oxidation State, and Reactivity of Particulate Manganese in Marine Sediments. Chem. Geol. 2005, 218, 265–279. DOI: 10.1016/chemgeo.2005.01.008.
  • Bergmann, J.; Kleeberg, R. Rietveld Analysis of Disordered Layer Silicates. MSF 1998, 278-281, 300–305. DOI: 104028/www.scientific.net/MSF.278-281.300.
  • Lu, A.; Gao, X.; Wang, C.; Gao, Y.; Zheng, D.; Chen, T.; Zhao, D.; Qin, S. Natural Cryptomelane and Its Potential Application in the Adsorption of Heavy Metal Cadmium. J. Miner. Petrol. Sci. 2007, 102, 217–225. DOI: 10.2465/jmps.060412.
  • Kijima, N.; Ikeda, T.; Oikawa, K.; Izumi, F.; Yoshimura, Y. Crystal Structure of an Open-Tunnel Oxide α-MnO2 Analyzed by Rietveld Refinements and MEM-Based Pattern Fitting. J. Solid State Chem. 2004, 177, 1258–1267. DOI: 10.1016/j.jssc.2003.10.038.
  • Chen, C.-H.; Njagi, E. C.; Chen, S. Y.; Horvath, D. T.; Xu, L.; Morey, A.; Mackin, C.; Joesten, R.; Suib, S. L. Structural Distortion of Molybdenum-Doped Manganese Oxide Octahedral Molecular Sieves for Enhanced Catalytic Performance. Inorg. Chem. 2015, 54, 10163–10171. DOI: 10.1021/acs.inorgchem.5b00906.
  • Fan, C.; Lu, A.; Li, Y.; Wang, C. Synthesis, Characterization, and Catalytic Activity of Cryptomelane Nanomaterials Produced with Industrial Manganese Sulfate. J Colloid Interface Sci. 2008, 327, 393–402. DOI: 10.1016/j.jcis.2008.08.015.
  • Burton, A. W.; Ong, K.; Rea, T.; Chan, I. Y. On the Estimation of Average Crystallite Size of Zeolites from the Scherrer Equation: A Critical Evaluation of Its Application to Zeolites with One-Dimensional Pore Systems. Microporous Mesoporous Mater. 2009, 117, 75–90. DOI: 10.1016/j.micomeso.2008.06.010.
  • Arenas, J. F.; Marcos, J. I. Infrared and Raman Spectra of Phthalic, Isophthalic and Terephthalic Acids. Spectrochim. Acta A 1980, 36, 1075–1081. DOI: 10.1016/0584-8539(80)80096-1.
  • Hintz, C. Description of Sorption Data with Isotherm Equations. Geoderma 2001, 99, 225–243. DOI: S0016-7061(00)00071-9.
  • Giles, C. H.; Smith, D.; Huitson, A. A General Treatment and Classification of the Solute Adsorption Isotherm. I. Theoretical. J. Colloid Interf. Sci. 1974, 47, 755–765. DOI: 10.1016/0021-9797(74)90252-5.
  • Danielsson, K.; Persson, P.; Gallego-Urrea, J. A.; Abbas, Z.; Rosenqvist, J.; Jonsson, C. M. Effects of the Adsorption of NOM Model Molecules on the Aggregation of TiO2 Nanoparticles in Aqueous Suspensions. NanoImpact 2018, 10, 177–187. DOI: 10.1016/j.impact.2018.05.002.
  • Li, L.; Cockayne, E.; Williamson, I.; Espinal, L.; Wong-Ng, W. First-Principales Studies of Carbon Dioxide Adsorption in Cryptomelane Hollandite-Type Manganese Dioxide. Chem. Phys. Lett 2013, 580, 120–125. DOI: 10.1016/j.cplett.2013.07.003.
  • Atkins, P.; De Paula, J. Physical Chemistry for the Life Sciences. Oxford University Press: Oxford, UK, 2006; pp 243–256.
  • Liu, P.; He, H.; Wei, G.; Liu, D.; Liang, X.; Chen, T.; Zhu, J.; Zhu, R. An Efficient Catalyst of Manganese Supported on Diatomite for Toluene Oxidation: Manganese Species, Catalytic Performance, and Structure-Activity Relationship. Microporous Mesoporous Mater. 2017, 239, 101–110. DOI: 10.1016/j.micomeso.2016.09.053.
  • Pang, W. K.; Peterson, V. K.; Sharma, N.; Zhang, C.; Guo, Z. Evidence of Solid-Solution Reaction upon Lithium Insertion into Cryptomelane K0.25Mn2O4 Material. J. Phys. Chem. C. 2014, 118, 3976–3983. DOI: 10.1021/jp411687nI.
  • Yuan, Y.; Nie, A.; Odegard, G. M.; Xu, R.; Zhou, D.; Santhanagopalan, S.; He, K.; Asayesh-Ardakani, H.; Meng, D. D.; Klie, R. F.; et al. Asynchronic Crystal Cell Expansion during Lithiation of K+-Stabilized α-MnO2. Nano Lett. 2015, 15, 2998–3007. DOI: 10.1021/nI5048913.
  • Hill, R. J.; Cranswick, L. M. D. IUCR Commission on Powder Diffraction; Rietveld Refinement Round Robin. II. Analysis of Monoclinic ZrO2. J. Appl. Crystallogr. 1994, 27, 802–844. DOI: 10.1107/S0021889894000646.
  • Chen, S.-Y.; Chen, Y.-T.; Lee, J.-J.; Cheng, S. Tuning Pore Diameter of Platelet SBA-15 Materials with Short Mesochannels for Enzyme Adsorption. J. Mat. Chem. 2011, 21, 569–5703. DOI: 10.1039/c0jm03591b.
  • Polverejan, M.; Villegas, J. C.; Suib, S. L. Higher Valency Ion Substitution into the Manganese Oxide Framework. J. Am. Chem. Soc. 2004, 126, 7774–7775. DOI: 10.1021/ja048985y.
  • Santos, V. P.; Carabineiro, S. A. C.; Bakker, J. J. W.; Soares, O. S. G. P.; Chen, X.; Pereira, M. F. R.; Órfão, J. J. M.; Figueiredo, J. I.; Gascon, J.; Kapteijn, F. Stabilized Gold on Cerium-Modified Cryptomelane: Highly Active in Low-Temperature CO Oxidation. J. Catal. 2014, 309, 58–65. DOI: 10.1016/j.jcat.2013.08.030.
  • Kim, H.-S.; Stair, P. C. Bacterially Produced Manganese Oxide and Todorokite: UV Raman Spectroscopic Comparison. J. Phys. Chem. B. 2004, 108, 17019–17026. DOI: 10.1021/jp048810a.
  • Wang, Y.; Liu, H.; Bao, M.; Li, B.; Su, H.; Wen, Y.; Wang, F. Structural Controlled Synthesis of Manganese Oxide Nanostructures and Their Electrochemical Properties. J. Alloys Comp. 2011, 509, 8306–8312. DOI: 10.1016/j.allcom.2011.05.085.
  • Yuan, J. Y.; Li, W.-N.; Gomez, S.; Suib, S. L. Shape-Controlled Synthesis of Manganese Oxide Octahedral Molecular Sieve Three-Dimensional Nanostructures. J. Am. Chem. Soc. 2005, 127, 14184–14186. DOI: 10.1021/ja053463j.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.