322
Views
1
CrossRef citations to date
0
Altmetric
Articles

One-step hydrothermal synthesis of ZnO nanorods as efficient oxygen evolution reaction catalyst

, &
Pages 101-107 | Received 13 Aug 2020, Accepted 01 Dec 2020, Published online: 10 Feb 2021

References

  • Bharat, T. C.; Mondal, S.; Gupta, H. S.; Singh, P. K.; Das, A. K. Synthesis of Doped Zinc Oxide Nanoparticles: A Review. Mater. Today: Proc. 2019, 11, 767–775.
  • Guo, Y.; Tang, J.; Henzie, J.; Jiang, B.; Qian, H.; Wang, Z.; Tan, H.; Bando, Y.; Yamauchi, Y. Assembly of Hollow Mesoporous Nanoarchitectures Composed of Ultrafine Mo2C Nanoparticles on N-Doped Carbon Nanosheets for Efficient Electrocatalytic Reduction of Oxygen. Mater. Horiz. 2017, 4, 1171–1177. DOI: 10.1039/C7MH00586E.
  • Tan, H.; Tang, J.; Henzie, J.; Li, Y.; Xu, X.; Chen, T.; Wang, Z.; Wang, J.; Ide, Y.; Bando, Y.; Yamauchi, Y. Assembly of Hollow Carbon Nanospheres on Graphene Nanosheets and Creation of Iron-Nitrogen-Doped Porous Carbon for Oxygen Reduction. Acs Nano 2018, 12, 5674–5683. DOI: 10.1021/acsnano.8b01502.
  • Xia, W.; Tang, J.; Li, J.; Zhang, S.; Wu, K. C.-W.; He, J.; Yamauchi, Y. Defect-Rich Graphene Nanomesh Produced by Thermal Exfoliation of Metal-Organic Frameworks for the Oxygen Reduction Reaction. Angew. Chem. Int. Ed. Engl. 2019, 58, 13354–13359. DOI: 10.1002/anie.201906870.
  • Fiaz, M.; Athar, M. Modification of MIL-125(Ti) by Incorporating Various Transition Metal Oxide Nanoparticles for Enhanced Photocurrent during Hydrogen and Oxygen Evolution Reaction. Chemistryselect 2019, 4, 8508–8515. DOI: 10.1002/slct.201901818.
  • Fiaz, M.; Athar, M.; Rani, S.; Najam-Ul-Haq, M.; Farid, M. A. One Pot Solvothermal Synthesis of Co3O4@UiO-66 and CuO@UiO-66 for Improved Current Density towards Hydrogen Evolution Reaction. Mater. Chem. Phys. 2020, 239, 122320. DOI: 10.1016/j.matchemphys.2019.122320.
  • Fiaz, M.; Athar, M. Facile Room-Temperature In Situ Incorporation of Transition-Metal Selenide (TMSe) Nanoparticles into MOF-5 for Oxygen Evolution Reaction. JOM 2020, 72, 2219–2225. DOI: 10.1007/s11837-019-03867-0.
  • Nguyen, L. T.; Nguyen, L. T.; Duong, A. T.; Nguyen, B. D.; Quang, H. N.; Chu, V. H.; Nguyen, T. D.; Bach, L. G. Preparation, Characterization and Photocatalytic Activity of La-Doped Zinc Oxide Nanoparticles. Materials 2019, 12, 1195. DOI: 10.3390/ma12081195.
  • Kahouli, M.; Barhoumi, A.; Bouzid, A.; Al-Hajry, A.; Guermazi, S. Structural and Optical Properties of ZnO Nanoparticles Prepared by Direct Precipitation Method. Superlattices Microstruct. 2015, 85, 7–23. DOI: 10.1016/j.spmi.2015.05.007.
  • Rahman, F. Zinc Oxide Light-Emitting Diodes: A Review. Opt. Eng. 2019, 58, 1. DOI: 10.1117/1.OE.58.1.010901.
  • Kou, L. Z.; Guo, W. L.; Li, C. Piezoelectricity of ZnO and Its Nanostructures. 2008 Symposium on Piezoelectricity, Acoustic Waves, and Device Applications, 2008, pp. 354–359.
  • Zhu, L.; Zeng, W. Room-Temperature Gas Sensing of ZnO-Based Gas Sensor: A Review. Sens. Actuators, A 2017, 267, 242–261. DOI: 10.1016/j.sna.2017.10.021.
  • Vittal, R.; Ho, K. C. Zinc Oxide Based Dye-Sensitized Solar Cells: A Review. Renewable Sustainable Energy Rev. 2017, 70, 920–935. DOI: 10.1016/j.rser.2016.11.273.
  • Song, J.; Zhou, J.; Wang, Z. L. Piezoelectric and Semiconducting Coupled Power Generating Process of a Single ZnO Belt/Wire. A Technology for Harvesting Electricity from the Environment. Nano Lett. 2006, 6, 1656–1662. DOI: 10.1021/nl060820v.
  • Wang, X.; Summers, C. J.; Wang, Z. L. Large-Scale Hexagonal-Patterned Growth of Aligned ZnO Nanorods for Nano-Optoelectronics and Nanosensor Arrays. Nano Lett. 2004, 4, 423–436. DOI: 10.1021/nl035102c.
  • Zahra, T.; Ahmad, K. S.; Thomas, A. G.; Zequine, C.; Malik, M. A.; Gupta, R. K. Organic Template-Based ZnO Embedded Mn3O4 Nanoparticles: Synthesis and Evaluation of Their Electrochemical Properties towards Clean Energy Generation. RSC Adv. 2020, 10, 9854–9867. DOI: 10.1039/C9RA10472K.
  • Wahl, S.; El‐Refaei, S. M.; Buzanich, A. G.; Amsalem, P.; Lee, K. S.; Koch, N.; Doublet, M. L.; Pinna, N. Zn0.35Co0.65O—a Stable and Highly Active Oxygen Evolution Catalyst Formed by Zinc Leaching and Tetrahedral Coordinated Cobalt in Wurtzite Structure. Adv. Energy Mater. 2019, 9, 1900328. DOI: 10.1002/aenm.201900328.
  • Klyukin, K.; Zagalskaya, A.; Alexandrov, V. Role of Dissolution Intermediates in Promoting Oxygen Evolution Reaction at RuO2 (110) Surface. J. Phys. Chem. C 2019, 123, 22151–22157. DOI: 10.1021/acs.jpcc.9b03418.
  • Zhong, W.; Lin, Z.; Feng, S.; Wang, D.; Shen, S.; Zhang, Q.; Gu, L.; Wang, Z.; Fang, B. Improved Oxygen Evolution Activity of IrO2 by In Situ Engineering of an Ultra-Small Ir Sphere Shell Utilizing a Pulsed Laser. Nanoscale 2019, 11, 4407–4413. DOI: 10.1039/c8nr10163a.
  • Cao, B. Q.; Lorenz, M.; Rahm, A.; Von;Wenckstern, H.; Czekalla, C.; Lenzner, J.; Benndorf, G.; Grundmann, M. Phosphorus Acceptor Doped ZnO Nanowires Prepared by Pulsed-Laser Deposition. Nanotechnology 2007, 8, 455707.
  • Tan, H.; Li, Y.; Kim, J.; Takei, T.; Wang, Z.; Xu, X.; Wang, J.; Bando, Y.; Kang, Y. M.; Tang, J.; Yamauchi, Y. Sub-50 nm Iron-Nitrogen-Doped Hollow Carbon Sphere-Encapsulated Iron Carbide Nanoparticles as Efficient Oxygen Reduction Catalysts . Adv. Sci. (Weinh) 2018, 5, 1800120. DOI: 10.1002/advs.201800120.
  • Park, W. I.; Yi, G. C.; Kim, M.; Pennycook, S. J. ZnO Nanoneedles Grown Vertically on Si Substrates by Non‐catalytic Vapor‐Phase Epitaxy. Adv. Mater. 2002, 14, 1841–1843. DOI: 10.1002/adma.200290015.
  • Al Abdullah, K.; Awad, S.; Zaraket, J.; Salame, C. Synthesis of ZnO nanopowders by Using Sol-Gel and Studying Their Structural and Electrical Properties at Different Temperature. Energy Procedia 2017, 119, 565–570. DOI: 10.1016/j.egypro.2017.07.080.
  • Samanta, P. K.; Bandyopadhyay, A. K. Chemical Growth of Hexagonal Zinc Oxide Nanorods and Their Optical Properties. Appl. Nanosci. 2012, 2, 111–117. DOI: 10.1007/s13204-011-0038-8.
  • Dinesh, V. P.; Biji, P.; Ashok, A.; Dhara, S. K.; Kamruddin, M.; Tyagi, A. K.; Raj, B. Highly Enhanced Photocatalytic Degradation of Industrial Textile Dyes Using Hybrid ZnO@Ag Core–Shell Nanorods. RSC Adv. 2014, 4, 58930–58940. DOI: 10.1039/C4RA09405K.
  • Handore, K.; Bhavsar, S.; Horne, A.; Chhattise, P.; Mohite, K.; Ambekar, J.; Pande, N.; Chabukswar, V. Novel Green Route of Synthesis of ZnO Nanoparticles by Using Natural Biodegradable Polymer and Its Application as a Catalyst for Oxidation of Aldehydes. J. Macromol. Sci. Part A 2014, 12, 941–947.
  • Decremps, F.; Pellicer-Porres, J.; Saitta, A. M.; Chervin, J. C.; Polian, A. High-Pressure Raman Spectroscopy Study of Wurtzite ZnO. Phys. Rev. B 2002, 9, 092101.
  • Fiaz, M.; Athar, M. Enhancing the Hydrogen and Oxygen Evolution Reaction Efficiency of Amine Functionalized MOF NH2-UiO-66 via Incorporation of CuO Nanoparticles. Catal. Lett. 2020, 150, 3314–3326. DOI: 10.1007/s10562-020-03223-x.
  • Jabbar, A.; Fiaz, M.; Rani, S.; Ashiq, M. N.; Athar, M. Incorporation of CuO/TiO2 Nanocomposite for Enhanced Oxygen Evolution Reaction (OER) and Photodegradation of Organic Dyes. J. Inorg. Organomet. Polym. 2020, 30, 4043–4052. DOI: 10.1007/s10904-020-01550-5.
  • Zhou, W.; Wu, X. J.; Cao, X.; Huang, X.; Tan, C.; Tian, J.; Liu, H.; Wang, J.; Zhang, H. Ni3S2 Nanorods/Ni Foam Composite Electrode with Low Overpotential for Electrocatalytic Oxygen Evolution. Energy Environ. Sci. 2013, 10, 2921–2924.
  • Menezes, P. W.; Panda, C.; Loos, S.; Bunschei-Bruns, F.; Walter, C.; Schwarze, M.; Deng, X.; Dau, H.; Driess, M. A Structurally Versatile Nickel Phosphite Acting as a Robust Bifunctional Electrocatalyst for Overall Water Splitting. Energy Environ. Sci. 2018, 11, 1287–1298.
  • Wang, Z.; Ren, X.; Wang, L.; Cui, G.; Wang, H.; Sun, X. A Hierarchical CoTe2–MnTe2 Hybrid Nanowire Array Enables High Activity for Oxygen Evolution Reactions. Chem. Commun. 2018, 54, 10993–10996. DOI: 10.1039/C8CC05672B.
  • Babar, N. U.; Joya, K. S. Spray-Coated Thin-Film Ni-Oxide Nanoflakes as Single Electrocatalysts for Oxygen Evolution and Hydrogen Generation from Water Splitting. ACS Omega. 2020, 5, 10641–10650. DOI: 10.1021/acsomega.9b02960.
  • Qi, Y.; Wu, J.; Xu, J.; Gao, H.; Du, Z.; Liu, B.; Liu, L.; Xiong, D. One-Step Fabrication of Self-Supported Co@CoTe2 Electrocatalyst for Efficient and Durable Oxygen Evolution Reaction. Inorg. Chem. Front. 2020, 7, 2523–2532. DOI: 10.1039/D0QI00372G.
  • Assal, M. E.; Kuniyil, M.; Shaik, M. R.; Khan, M.; Al-Warthan, A.; Siddiqui, M. R.; Adil, S. F. Synthesis, Characterization, and Relative Study on the Catalytic Activity of Zinc Oxide Nanoparticles Doped MnCO3, –MnO2, and –Mn2O3 Nanocomposites for Aerial Oxidation of Alcohols. J. Chem. 2017, 2017, 1–17. DOI: 10.1155/2017/2937108.
  • Park, H. S.; Seo, E.; Yang, J.; Lee, Y.; Kim, B. S.; Song, H. K. Bifunctional Hydrous RuO2 Nanocluster Electrocatalyst Embedded in Carbon Matrix for Efficient and Durable Operation of Rechargeable Zinc–Air Batteries. Sci. Rep. 2017, 7, 1–9. DOI: 10.1038/s41598-017-07259-9.
  • Zhang, L.; Li, H.; Yang, B.; Zhou, Y.; Zhang, Z.; Wang, Y. Photo-Deposition of ZnO/Co3O4 Core-Shell Nanorods with PN Junction for Efficient Oxygen Evolution Reaction. J. Solid State Electrochem. 2019, 23, 3287–3297. DOI: 10.1007/s10008-019-04444-w.
  • Sadaqat, M.; Nisar, L.; Babar, N.-U.-A.; Hussain, F.; Ashiq, M. N.; Shah, A.; Ehsan, M. F.; Najam-Ul-Haq, M.; Joya, K. S. Zinc-Telluride Nanospheres as an Efficient Water Oxidation Electrocatalyst Displaying a Low Overpotential for Oxygen Evolution. J. Mater. Chem. A 2019, 7, 26410–26420. DOI: 10.1039/C9TA07171G.
  • Lee, K. K.; Chin, W. S.; Sow, C. H. Cobalt-Based Compounds and Composites as Electrode Materials for High-Performance Electrochemical Capacitors. J. Mater. Chem. A 2014, 41, 17212–17248.
  • Feng, L.; Vrubel, H.; Bensimon, M.; Hu, X. Easily-Prepared Dinickel Phosphide (Ni2 P) Nanoparticles as an Efficient and Robust Electrocatalyst for Hydrogen Evolution. Phys. Chem. Chem. Phys. 2014, 16, 5917–5921. DOI: 10.1039/c4cp00482e.
  • Das, D.; Das, A.; Reghunath, M.; Nanda, K. K. Phosphine-Free Avenue to Co2P Nanoparticle Encapsulated N, P Co-Doped CNTs: A Novel Non-Enzymatic Glucose Sensor and an Efficient Electrocatalyst for Oxygen Evolution Reaction. Green Chem. 2017, 19, 1327–1335. DOI: 10.1039/C7GC00084G.
  • Kim, M. I.; Lee, Y. S. A Comprehensive Review of Gas Sensors Using Carbon Materials. J. Nanosci. Nanotechnol. 2016, 16, 4310–4319. DOI: 10.1166/jnn.2016.10968.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.