334
Views
7
CrossRef citations to date
0
Altmetric
Reviews

A review on green synthesis of iron (Fe) nanomaterials, its alloys and oxides

ORCID Icon, , &
Pages 20-36 | Received 25 Aug 2020, Accepted 01 Dec 2020, Published online: 22 Dec 2020

References

  • Mantilaka, M.; Wijesinghe, W.; Dissanayake, D.; Ekanayake, U. M.; Senthilnathan, A. Current review on the utilization of nanoparticles for ceramic matrix reinforcement. In Interfaces in Particle and Fibre Reinforced Composites, Woodhead Publishing, Elsevier, 2020; pp. 345–367.
  • Din, M. I.; Sehar, R.; Hussain, Z.; Khalid, R.; Shah, A. T. Synthesis of Biodegradable Semolina Starch Plastic Films Reinforced with Biogenically Synthesized Zno Nanoparticles. Inorg. Nano-Met. Chem. 2020, 1–10.
  • Din, M. I.; Khalid, R.; Hussain, Z.; Hussain, T.; Mujahid, A.; Najeeb, J.; Izhar, F. Nanocatalytic Assemblies for Catalytic Reduction of Nitrophenols: A Critical Review. Crit. Rev. Anal. Chem. 2019, 50, 1–17.
  • Sharma, D.; Kanchi, S.; Bisetty, K. Biogenic Synthesis of Nanoparticles: A Review. Arabian J. Chem. 2019, 12, 3576–3600. DOI: 10.1016/j.arabjc.2015.11.002.
  • Herlekar, M.; Barve, S.; Kumar, R. Plant-Mediated Green Synthesis of Iron Nanoparticles. J. Nanopart. 2014, 2014, 1–9. DOI: 10.1155/2014/140614.
  • Bachheti, R. K.; Konwarh, R.; Gupta, V.; Husen, A.; Joshi, A. Green Synthesis of Iron Oxide Nanoparticles: Cutting Edge Technology and Multifaceted Applications, Nanomaterials and Plant Potential; Springer, Cham, 2019, pp. 239–259.
  • Arabi, M.; Ostovan, A.; Bagheri, A. R.; Guo, X.; Li, J.; Ma, J.; Chen, L. Hydrophilic Molecularly Imprinted Nanospheres for the Extraction of Rhodamine b followed by HPLC Analysis: A Green Approach and Hazardous Waste Elimination. Talanta 2020, 215, 120933. DOI: 10.1016/j.talanta.2020.120933.
  • Wang, L.; Li, J.; Wang, J.; Guo, X.; Wang, X.; Choo, J.; Chen, L. Green Multi-Functional Monomer Based Ion Imprinted Polymers for Selective Removal of Copper Ions from Aqueous Solution. J. Colloid Interface Sci. 2019, 541, 376–386. DOI: 10.1016/j.jcis.2019.01.081.
  • Leili, M.; Fazlzadeh, M.; Bhatnagar, A. Green Synthesis of Nano-Zero-Valent Iron from Nettle and Thyme Leaf Extracts and Their Application for the Removal of Cephalexin Antibiotic from Aqueous Solutions. Environ. Technol. 2018, 39, 1158–1172. DOI: 10.1080/09593330.2017.1323956.
  • Din, M. I.; Rizwan, R.; Hussain, Z.; Khalid, R. Biogenic Synthesis of Mono Dispersed co/Coo Nanoparticles Using Syzygium Cumini Leaves for Catalytic Application. Inorg. Nano. Met. Chem. 2020, 1–7.
  • Wang, X.; Xu, J.; Wang, X.; Qiu, B.; Cuthbertson, A. G. S.; Du, C.; Wu, J.; Ali, S. Isaria Fumosorosea Based Zero‐Valent Iron Nanoparticles Affects the Growth and Survival of Sweetpotato Whitefly, Bemisia tabaci (Gennadius). Pest. Manage. Sci. 2019, 75, 2174–2181.
  • Mandal, D.; Bolander, M. E.; Mukhopadhyay, D.; Sarkar, G.; Mukherjee, P. The Use of Microorganisms for the Formation of Metal Nanoparticles and their Application. Appl. Microbiol. Biotechnol. 2006, 69, 485–492.
  • Inbaraj, B. S.; Kao, T. H.; Tsai, T. Y.; Chiu, C. P.; Kumar, R.; Chen, B.-H. The Synthesis and Characterization of Poly(γ-glutamic acid)-Coated Magnetite Nanoparticles and Their Effects on Antibacterial Activity and Cytotoxicity. Nanotechnology 2011, 22, 075101. DOI: 10.1088/0957-4484/22/7/075101.
  • Luechinger, N. A.; Grass, R. N.; Athanassiou, E. K.; Stark, W. J. Bottom-up Fabrication of Metal/Metal Nanocomposites from Nanoparticles of Immiscible Metals. Chem. Mater. 2010, 22, 155–160. DOI: 10.1021/cm902527n.
  • Bibi, I.; Nazar, N.; Iqbal, M.; Kamal, S.; Nawaz, H.; Nouren, S.; Safa, Y.; Jilani, K.; Sultan, M.; Ata, S.; et al. Green and Eco-Friendly Synthesis of Cobalt-Oxide Nanoparticle: Characterization and Photo-Catalytic Activity. Adv. Powder Technol. 2017, 28, 2035–2043. DOI: 10.1016/j.apt.2017.05.008.
  • Ostovan, A.; Ghaedi, M.; Arabi, M.; Yang, Q.; Li, J.; Chen, L. Hydrophilic Multitemplate Molecularly Imprinted Biopolymers Based on a Green Synthesis Strategy for Determination of B-Family Vitamins. ACS Appl. Mater. Interfaces. 2018, 10, 4140–4150. DOI: 10.1021/acsami.7b17500.
  • Ahmad, R.; Mirza, A. Facile One Pot Green Synthesis of Chitosan-Iron Oxide (cs-fe2o3) Nanocomposite: Removal of pb (ii) and Cd (ii) from Synthetic and Industrial Wastewater. J. Cleaner Prod. 2018, 186, 342–352. DOI: 10.1016/j.jclepro.2018.03.075.
  • Pugazhendhi, A.; Edison, T. N. J. I.; Karuppusamy, I.; Kathirvel, B. Inorganic Nanoparticles: A Potential Cancer Therapy for Human Welfare. Int. J. Pharm. 2018, 539, 104–111. DOI: 10.1016/j.ijpharm.2018.01.034.
  • Bagheri, A. R.; Arabi, M.; Ghaedi, M.; Ostovan, A.; Wang, X.; Li, J.; Chen, L. Dummy Molecularly Imprinted Polymers Based on a Green Synthesis Strategy for Magnetic Solid-Phase Extraction of Acrylamide in Food Samples. Talanta 2019, 195, 390–400. DOI: 10.1016/j.talanta.2018.11.065.
  • Arakha, M.; Pal, S.; Samantarrai, D.; Panigrahi, T. K.; Mallick, B. C.; Pramanik, K.; Mallick, B.; Jha, S. Antimicrobial Activity of Iron Oxide Nanoparticle upon Modulation of Nanoparticle-Bacteria Interface. Sci. Rep. 2015, 5, 14813.
  • Ebrahiminezhad, A.; Taghizadeh, S.; Ghasemi, Y.; Berenjian, A. Green Synthesized Nanoclusters of Ultra-Small Zero Valent Iron Nanoparticles as a Novel Dye Removing Material. Sci. Total Environ. 2018, 621, 1527–1532. DOI: 10.1016/j.scitotenv.2017.10.076.
  • Khan, Z.; Al-Thabaiti, S. A. Green Synthesis of Zero-Valent fe-Nanoparticles: Catalytic Degradation of Rhodamine b, Interactions with Bovine Serum Albumin and Their Enhanced Antimicrobial Activities. J. Photochem. Photobiol. B 2018, 180, 259–267. DOI: 10.1016/j.jphotobiol.2018.02.017.
  • Seabra, A. B.; Haddad, P.; Duran, N. Biogenic Synthesis of Nanostructured Iron Compounds: Applications and Perspectives. IET Nanobiotechnol. 2013, 7, 90–99. DOI: 10.1049/iet-nbt.2012.0047.
  • Kharisov, B. I.; Dias, H. R.; Kharissova, O. V.; Jiménez-Pérez, V. M.; Perez, B. O.; Flores, B. M. Iron-Containing Nanomaterials: Synthesis, Properties, and Environmental Applications. RSC Adv. 2012, 2, 9325–9358. DOI: 10.1039/c2ra20812a.
  • Gubin, S. P.; Koksharov, Y. A.; Khomutov, G.; Yurkov, G. Y. Magnetic Nanoparticles: Preparation, Structure and Properties. Russ. Chem. Rev. 2005, 74, 489–520. DOI: 10.1070/RC2005v074n06ABEH000897.
  • Genuino, H.; Mazrui, N.; Seraji, M.; Luo, Z.; Hoag, G. Green Synthesis of Iron Nanomaterials for Oxidative Catalysis of Organic Environmental Pollutants; Elsevier: Amsterdam, 2013, pp. 41–61.
  • Virkutyte, J.; Varma, R. S. Green Synthesis of Metal Nanoparticles: Biodegradable Polymers and Enzymes in Stabilization and Surface Functionalization. Chem. Sci. 2011, 2, 837–846. DOI: 10.1039/C0SC00338G.
  • Mohapatra, M.; Anand, S. Synthesis and Applications of Nano-Structured Iron Oxides/Hydroxides–A Review. Int. J. Eng. Sci. Tech. 2011, 2, 127–146. DOI: 10.4314/ijest.v2i8.63846.
  • Arenas-Alatorre, J.; Tehuacanero C, S.; Lukas, O.; Rodríguez-Gómez, A.; Hernández Reyes, R.; Tapia-del León, C.; Lara V. J. Synthesis and Characterization of Iron Oxide Nanoparticles Grown via a Non-Conventional Chemical Method Using an External Magnetic Field. Mater. Lett. 2019, 242, 13–16. DOI: 10.1016/j.matlet.2019.01.098.
  • Gonzalez-Moragas, L.; Yu, S.-M.; Murillo-Cremaes, N.; Laromaine, A.; Roig, A. Scale-up Synthesis of Iron Oxide Nanoparticles by Microwave-Assisted Thermal Decomposition. Chem. Eng. J. 2015, 281, 87–95. DOI: 10.1016/j.cej.2015.06.066.
  • Bolade, O. P.; Williams, A. B.; Benson, N. U. Green Synthesis of Iron-Based Nanomaterials for Environmental Remediation: A Review. Environ. Nanotechnol. Monit. Manage. 2020, 13, 100279.
  • Karade, V. C.; Dongale, T. D.; Sahoo, S. C.; Kollu, P.; Chougale, A. D.; Patil, P. S.; Patil, P. B. Effect of Reaction Time on Structural and Magnetic Properties of Green-Synthesized Magnetic Nanoparticles. J. Phys. Chem. Solids 2018, 120, 161–166. DOI: 10.1016/j.jpcs.2018.04.040.
  • Wu, W.; Wu, Z.; Yu, T.; Jiang, C.; Kim, W.-S. Recent Progress on Magnetic Iron Oxide Nanoparticles: Synthesis, Surface Functional Strategies and Biomedical Applications. Sci. Technol. Adv. Mater. 2015, 16, 1–43.
  • Yew, Y. P.; Shameli, K.; Miyake, M.; Khairudin, N. B. B. A.; Mohamad, S. E. B.; Naiki, T.; Lee, K. X. Green Biosynthesis of Superparamagnetic Magnetite Fe3O4 Nanoparticles and Biomedical Applications in Targeted Anticancer Drug Delivery System: A Review. Arabian J. Chem. 2020, 13, 2287–2308. DOI: 10.1016/j.arabjc.2018.04.013.
  • Aisida, S. O.; Madubuonu, N.; Alnasir, M. H.; Ahmad, I.; Botha, S.; Maaza, M.; Ezema, F. I. Biogenic Synthesis of Iron Oxide Nanorods Using Moringa Oleifera Leaf Extract for Antibacterial Applications. Appl. Nanosci. 2020, 10, 305–315. DOI: 10.1007/s13204-019-01099-x.
  • Abbasi, B. A.; Iqbal, J.; Zahra, S. A.; Shahbaz, A.; Kanwal, S.; Rabbani, A.; Mahmood, T. Bioinspired Synthesis and Activity Characterization of Iron Oxide Nanoparticles Made Using Rhamnus Triquetra Leaf Extract. Mater. Res. Express. 2020, 6, 12507–12557. DOI: 10.1088/2053-1591/ab664d.
  • Cheng, R.; Sheng, J. Research Progress on Polyphenols Phytochemicals of Strawberry Fruits. J. Food Saf. Qual. 2015, 6, 575–584.
  • Marcus, A. C.; Edori, O. S.; Maduagu, M. C. Phytochemical and Anti-Microbial Screening of Phyllantus Fratenus and Taraxacuim Officinale Leaves. Biochem. Anal. Biochem. 2019, 8, 2161–2169.
  • Eswaraiah, G.; Peele, K. A.; Krupanidhi, S.; Kumar, R. B.; Venkateswarulu, T. C. Studies on Phytochemical, Antioxidant, Antimicrobial Analysis and Separation of Bioactive Leads of Leaf Extract from the Selected Mangroves. J. King. Saud. Uni. Sci. 2020, 32, 842–847.
  • Prior, R. L.; Cao, G. Antioxidant Phytochemicals in Fruits and Vegetables: Diet and Health Implications. Hortscience 2000, 35, 588–592. DOI: 10.21273/HORTSCI.35.4.588.
  • Ghosh, N.; Ghosal, S.; Bhattacharyya, D. K. Phytochemical Screening and Antioxidative Activity of Oil Extracted from Indian Carp Fish (Labeo Rohita) Skin. Int. Res. J. Eng. Tech. 2019, 06, 1414-1420.
  • Mallek‐Ayadi, S.; Bahloul, N.; Kechaou, N. Phytochemical Profile, Nutraceutical Potential and Functional Properties of Cucumis Melo l. Seeds. J. Sci. Food Agri. 2019, 99, 1294–1301.
  • Dykes, L. Sorghum Phytochemicals and Their Potential Impact on Human Health; Springer: Sorghum, 2019, pp. 121–140.
  • Katata-Seru, L.; Moremedi, T.; Aremu, O. S.; Bahadur, I. Green Synthesis of Iron Nanoparticles Using Moringa Oleifera Extracts and Their Applications: Removal of Nitrate from Water and Antibacterial Activity against escherichia coli. J. Mol. Liq. 2018, 256, 296–304. DOI: 10.1016/j.molliq.2017.11.093.
  • Chauhan, S.; Upadhyay, L. S. B. Biosynthesis of Iron Oxide Nanoparticles Using Plant Derivatives of Lawsonia Inermis (Henna) and Its Surface Modification for Biomedical Application. Nanotechnol. Environ. Eng. 2019, 4, 8. DOI: 10.1007/s41204-019-0055-5.
  • Plachtová, P.; Medříková, Z.; Zbořil, R.; Tuček, J.; Varma, R. S.; Maršálek, B. Iron and Iron Oxide Nanoparticles Synthesized with Green Tea Extract: Differences in Ecotoxicological Profile and Ability to Degrade Malachite Green. ACS Sustainable Chem. Eng. 2018, 6, 8679–8687. DOI: 10.1021/acssuschemeng.8b00986.
  • Asghar, M. A.; Zahir, E.; Shahid, S. M.; Khan, M. N.; Asghar, M. A.; Iqbal, J.; Walker, G. Iron, Copper and Silver Nanoparticles: Green Synthesis Using Green and Black Tea Leaves Extracts and Evaluation of Antibacterial, Antifungal and Aflatoxin b1 Adsorption Activity. LWT 2018, 90, 98–107. DOI: 10.1016/j.lwt.2017.12.009.
  • Essien, E. A.; Kavaz, D.; Solomon, M. M. Olive Leaves Extract Mediated Zero-Valent Iron Nanoparticles: Synthesis, Characterization, and Assessment as Adsorbent for Nickel (ii) Ions in Aqueous Medium. Chem. Eng. Commun. 2018, 205, 1568–1582. DOI: 10.1080/00986445.2018.1461089.
  • Asoufi, H. M.; Al-Antary, T. M.; Awwad, A. M. Green Route for Synthesis Hematite (α-fe2o3) Nanoparticles: Toxicity Effect on the Green Peach Aphid, myzus persicae (Sulzer). Environ. Nanotechnol. Monit. Manage. 2018, 9, 107–111.
  • Silveira, C.; Shimabuku, Q. L.; Fernandes Silva, M.; Bergamasco, R. Iron-Oxide Nanoparticles by the Green Synthesis Method Using Moringa Oleifera Leaf Extract for Fluoride Removal. Environ. Technol. 2018, 39, 2926–2936. DOI: 10.1080/09593330.2017.1369582.
  • Beheshtkhoo, N.; Kouhbanani, M. A. J.; Savardashtaki, A.; Amani, A. M.; Taghizadeh, S. Green Synthesis of Iron Oxide Nanoparticles by Aqueous Leaf Extract of Daphne Mezereum as a Novel Dye Removing Material. Appl. Phys. A. 2018, 124, 363. DOI: 10.1007/s00339-018-1782-3.
  • Sathya, K.; Saravanathamizhan, R.; Baskar, G. Ultrasound Assisted Phytosynthesis of Iron Oxide Nanoparticle. Ultrason. Sonochem. 2017, 39, 446–451. DOI: 10.1016/j.ultsonch.2017.05.017.
  • Harshiny, M.; Iswarya, C. N.; Matheswaran, M. Biogenic Synthesis of Iron Nanoparticles Using Amaranthus Dubius Leaf Extract as a Reducing Agent. Powder. Technol. 2015, 286, 744–749. DOI: 10.1016/j.powtec.2015.09.021.
  • Ehrampoush, M. H.; Miria, M.; Salmani, M. H.; Mahvi, A. H. Cadmium Removal from Aqueous Solution by Green Synthesis Iron Oxide Nanoparticles with Tangerine Peel Extract. J. Environ. Health Sci. Eng. 2015, 13, 84. DOI: 10.1186/s40201-015-0237-4.
  • Gan, L.; Lu, Z.; Cao, D.; Chen, Z. Effects of Cetyltrimethylammonium Bromide on the Morphology of Green Synthesized Fe3O4 Nanoparticles Used to Remove phosphate. Mater. Sci. Eng. C Mater. Biol. Appl. 2018, 82, 41–45. DOI: 10.1016/j.msec.2017.08.073.
  • Izadi, A.; Safaeijavan, R.; Moniri, E.; Alavi, S. A. Green Synthesis of Iron Oxide nanoparticles using carum Carvi l and Modified with Chitosan in Order to Optimize the Anti-Cancer Drug Adsorption. Int. J. Bio.-Inorg. Hybr. Nanomater. 2018, 7, 71–78.
  • Rajalakshmi, B. S.; Jenifer, A. A.; Ahila, K. G.; Vasanthy, M.; Thamaraiselvi, C. Effective Removal of Tds and Cod from Sugar Effluent Using Green Synthesized Magnetic Iron Nanoparticle with Trigonella Foenum-Graecum Seed Mucilage, Waste Management and Resource Efficiency; Springer, Singapore, 2019, pp. 961–973.
  • Karpagavinayagam, P.; Vedhi, C. Green Synthesis of Iron Oxide Nanoparticles Using Avicennia Marina Flower Extract. Vacuum 2019, 160, 286–292. DOI: 10.1016/j.vacuum.2018.11.043.
  • Sathishkumar, G.; Logeshwaran, V.; Sarathbabu, S.; Jha, P. K.; Jeyaraj, M.; Rajkuberan, C.; Senthilkumar, N.; Sivaramakrishnan, S. Green Synthesis of Magnetic fe3o4 Nanoparticles Using Couroupita Guianensis Aubl. Fruit Extract for Their Antibacterial and Cytotoxicity Activities. Artif. Cells. Nanomed. Biotechnol. 2018, 46, 589–598. DOI: 10.1080/21691401.2017.1332635.
  • Clarina, T.; Flomina, P. J.; Thangeswari, P.; Rama, V. Polpala Flower Extract Mediated One Step Green Synthesis and Characterization of Magnetite (fe3o4) Nanoparticles. Asia. J. Res. Chem. 2018, 11, 459–462. DOI: 10.5958/0974-4150.2018.00083.4.
  • Saranya, S.; Vijayarani, K.; Pavithra, S. Green Synthesis of Iron Nanoparticles Using Aqueous Extract of Musa Ornata Flower Sheath against Pathogenic Bacteria. Indian J. Pharm. Sci. 2017, 79, 688–694.
  • Al-Dhabi, N. A.; Balachandran, C.; Raj, M. K.; Duraipandiyan, V.; Muthukumar, C.; Ignacimuthu, S.; Khan, I. A.; Rajput, V. S. Antimicrobial, Antimycobacterial and Antibiofilm Properties of Couroupita Guianensis Aubl. fruit extract. BMC Complement Altern. Med. 2012, 12, 242. DOI: 10.1186/1472-6882-12-242.
  • Demirezen, D. A.; Yıldız, Y. Ş.; Yılmaz, Ş.; Yılmaz, D. D. Green Synthesis and Characterization of Iron Oxide Nanoparticles Using Ficus carica (Common Fig) Dried Fruit Extract. J. Biosci. Bioeng. 2019, 127, 241–245.
  • Manquián-Cerda, K.; Cruces, E.; Rubio, M. A.; Reyes, C.; Arancibia-Miranda, N. Preparation of Nanoscale Iron (Oxide, Oxyhydroxides and Zero-Valent) Particles Derived from Blueberries: Reactivity, Characterization and Removal Mechanism of Arsenate. Ecotoxicol. Environ. Saf. 2017, 145, 69–77. DOI: 10.1016/j.ecoenv.2017.07.004.
  • Kasote, D. M.; Lee, J.; Jayaprakasha, G. K.; Patil, B. S. Seed Priming with Iron Oxide Nanoparticles Modulate Antioxidant Potential and Defense Linked Hormones in Watermelon Seedlings. ACS Sustainable Chem. Eng. 2019, 7, 5142–5151. DOI: 10.1021/acssuschemeng.8b06013.
  • Turakhia, B.; Chikkala, S.; Shah, S. Novelty of Bioengineered Iron Nanoparticles in Nanocoated Surgical Cotton: A Green Chemistry. Adv. Pharmacol. Sci. 2019, 2019, 1–10. DOI: 10.1155/2019/9825969.
  • Nasiri, J.; Motamedi, E.; Naghavi, M. R.; Ghafoori, M. Removal of Crystal Violet from Water Using β-Cyclodextrin Functionalized Biogenic Zero-Valent Iron Nanoadsorbents Synthesized via Aqueous Root Extracts of Ferula Persica. J. Hazard. Mater. 2019, 367, 325–338. DOI: 10.1016/j.jhazmat.2018.12.079.
  • Da’na, E.; Taha, A.; Afkar, E. Green Synthesis of Iron Nanoparticles by Acacia Nilotica Pods Extract and Its Catalytic, Adsorption, and Antibacterial Activities. Appl. Sci. 2018, 8, 1922.
  • Ravikumar, K. V. G.; Sudakaran, S. V.; Ravichandran, K.; Pulimi, M.; Natarajan, C.; Mukherjee, A. Green Synthesis of Nife Nano Particles Using Punica Granatum Peel Extract for Tetracycline Removal. J. Cleaner Prod. 2019, 210, 767–776. DOI: 10.1016/j.jclepro.2018.11.108.
  • Gündüz, F.; Bayrak, B. Synthesis and Performance of Pomegranate Peel-Supported Zero-Valent Iron Nanoparticles for Adsorption of Malachite Green. DWT. 2018, 110, 180–192. DOI: 10.5004/dwt.2018.22185.
  • Rana, P.; Sharma, S.; Sharma, R.; Banerjee, K. Apple Pectin Supported Superparamagnetic (γ-Fe2O3) Maghemite Nanoparticles with Antimicrobial Potency. Mater. Sci. Energy Technol. 2019, 2, 15–21.
  • Lung, I.; Stan, M.; Opris, O.; Soran, M.-L.; Senila, M.; Stefan, M. Removal of Lead (ii), Cadmium (ii), and Arsenic (Iii) from Aqueous Solution Using Magnetite Nanoparticles Prepared by Green Synthesis with Box–Behnken Design. Anal. Lett. 2018, 51, 2519–2531. DOI: 10.1080/00032719.2018.1446974.
  • Desalegn, B.; Megharaj, M.; Chen, Z.; Naidu, R. Green Mango Peel-Nanozerovalent Iron Activated Persulfate Oxidation of Petroleum Hydrocarbons in Oil Sludge Contaminated Soil. Environ. Technol. Innovation. 2018, 11, 142–152. DOI: 10.1016/j.eti.2018.05.007.
  • Wei, Y.; Fang, Z.; Zheng, L.; Tan, L.; Tsang, E. P. Green Synthesis of fe Nanoparticles Using Citrus Maxima Peels Aqueous Extracts. Mater. Lett. 2016, 185, 384–386. DOI: 10.1016/j.matlet.2016.09.029.
  • Sebastian, A.; Nangia, A.; Prasad, M. N. V. A Green Synthetic Route to Phenolics Fabricated Magnetite Nanoparticles from Coconut Husk Extract: Implications to Treat Metal Contaminated Water and Heavy Metal Stress in Oryza sativa l. J. Cleaner Prod. 2018, 174, 355–366. DOI: 10.1016/j.jclepro.2017.10.343.
  • Turakhia, B.; Turakhia, P.; Shah, S. Green Synthesis of Zero Valent Iron Nanoparticles from Spinacia Oleracea (Spinach) and Its Application in Waste Water Treatment. J. Adv. Res. Appl. Sci. 2018, 5, 46–51.
  • Hafiz, S. M.; Kulkarni, S. S.; Thakur, M. K. In-Vivo Toxicity Assessment of Biologically Synthesized Iron Oxide Nanoparticles in Zebrafish (Danio rerio). Biosci. Biotechnol. Res. Asia 2018, 15, 419–425.
  • Sirdeshpande, K. D.; Sridhar, A.; Cholkar, K. M.; Selvaraj, R. Structural Characterization of Mesoporous Magnetite Nanoparticles Synthesized Using the Leaf Extract of Calliandra Haematocephala and Their Photocatalytic Degradation of Malachite Green Dye. Appl. Nanosci. 2018, 8, 675–683. DOI: 10.1007/s13204-018-0698-8.
  • Jin, X.; Liu, Y.; Tan, J.; Owens, G.; Chen, Z. Removal of Cr (vi) from Aqueous Solutions via Reduction and Absorption by Green Synthesized Iron Nanoparticles. J. Cleaner Prod. 2018, 176, 929–936. DOI: 10.1016/j.jclepro.2017.12.026.
  • Alajmi, M. F.; Ahmed, J.; Hussain, A.; Ahamad, T.; Alhokbany, N.; Amir, S.; Ahmad, T.; Alshehri, S. M. Green Synthesis of Fe3O4 Nanoparticles Using Aqueous Extracts of Pandanus Odoratissimus Leaves for Efficient Bifunctional Electro-Catalytic Activity. Appl. Nanosci. 2018, 8, 1427–1435. DOI: 10.1007/s13204-018-0795-8.
  • Liu, Y.; Jin, X.; Chen, Z. The Formation of Iron Nanoparticles by Eucalyptus Leaf Extract and Used to Remove Cr(VI)). Sci. Total Environ. 2018, 627, 470–479. DOI: 10.1016/j.scitotenv.2018.01.241.
  • Garole, V.; Choudhary, B.; Tetgure, S.; Garole, D.; Borse, A. Detoxification of Toxic Dyes Using Biosynthesized Iron Nanoparticles by Photo-Fenton Processes. Int. J. Environ. Sci. Technol. 2018, 15, 1649–1656. DOI: 10.1007/s13762-017-1510-0.
  • Ali, I.; Peng, C.; Lin, D.; Naz, I. Green Synthesis of the Innovative Super Paramagnetic Nanoparticles from the Leaves Extract of Fraxinus Chinensis Roxb and Their Application for the Decolourisation of Toxic Dyes. Green Process. Synth. 2019, 8, 256–271. DOI: 10.1515/gps-2018-0078.
  • Ozkan, Z. Y.; Cakirgoz, M.; Kaymak, E. S.; Erdim, E. Rapid Decolorization of Textile Wastewater by Green Synthesized Iron Nanoparticles. Water Sci. Technol. 2018, 77, 511–517. DOI: 10.2166/wst.2017.559.
  • Devatha, C. P.; Jagadeesh, K.; Patil, M. Effect of Green Synthesized Iron Nanoparticles by Azardirachta Indica in Different Proportions on Antibacterial Activity. Environ. Nanotechnol. Monit. Manage. 2018, 9, 85–94.
  • Lin, J.; Su, B.; Sun, M.; Chen, B.; Chen, Z. Biosynthesized Iron Oxide Nanoparticles Used for Optimized Removal of Cadmium with Response Surface Methodology. Sci. Total Environ. 2018, 627, 314–321. DOI: 10.1016/j.scitotenv.2018.01.170.
  • Heydari, R.; Koudehi, M. F.; Pourmortazavi, S. M. Antibacterial Activity of Fe3O4/Cu Nanocomposite: Green Synthesis Using Carum Carvi l. Seeds Aqueous Extract. Chem. Select. 2019, 4, 531–535.
  • Koli, R. R.; Phadatare, M. R.; Sinha, B. B.; Sakate, D. M.; Ghule, A. V.; Ghodake, G. S.; Deshpande, N. G.; Fulari, V. J. Gram Bean Extract-Mediated Synthesis of Fe3O4 Nanoparticles for Tuning the Magneto-Structural Properties That Influence the Hyperthermia Performance. J. Taiwan Inst. Chem. Eng. 2019, 95, 357–368. DOI: 10.1016/j.jtice.2018.07.039.
  • Ahila, K. G.; Vasanthy, M.; Thamaraiselvi, C. Green Synthesis of Magnetic Iron Nanoparticle Using Moringa Oleifera Lam Seeds and Its Application in Textile Effluent Treatment. In Utilization and Management of Bioresources; Springer, 2018, pp. 315–324.
  • Radini, I. A.; Hasan, N.; Malik, M. A.; Khan, Z. Biosynthesis of Iron Nanoparticles Using Trigonella Foenum-Graecum Seed Extract for Photocatalytic Methyl Orange Dye Degradation and Antibacterial Applications. J. Photochem. Photobiol., B 2018, 183, 154–163. DOI: 10.1016/j.jphotobiol.2018.04.014.
  • Oliveira, J.; Rodrigues, R.; Barros, L.; Ferreira, I.; Marchesi, L.; Koneracka, M.; Jurikova, A.; Zavisova, V.; Gomes, H. Carbon-Based Magnetic Nanocarrier for Controlled Drug Release: A Green Synthesis Approach. C 2019, 5, 1.
  • Bishnoi, S.; Kumar, A.; Selvaraj, R. Facile Synthesis of Magnetic Iron Oxide Nanoparticles Using Inedible Cynometra Ramiflora Fruit Extract Waste and Their Photocatalytic Degradation of Methylene Blue Dye. Mater. Res. Bull 2018, 97, 121–127. DOI: 10.1016/j.materresbull.2017.08.040.
  • Sravanthi, K.; Ayodhya, D.; Swamy, P. Y. Green Synthesis, Characterization of Biomaterial-Supported Zero-Valent Iron Nanoparticles for Contaminated Water Treatment. J. Anal. Sci. Technol 2018, 9, 3.
  • Hassan, D.; Khalil, A. T.; Saleem, J.; Diallo, A.; Khamlich, S.; Shinwari, Z. K.; Maaza, M. Biosynthesis of Pure Hematite Phase Magnetic Iron Oxide Nanoparticles Using Floral Extracts of Callistemon Viminalis (Bottlebrush): Their Physical Properties and Novel Biological Applications. Artif. Cells Nanomed. Biotechnol  Supplement, 2018, 46, 693-707..
  • Narayanan, K. B.; Han, S. S. One-Pot Green Synthesis of Hematite (α-Fe2O3) Nanoparticles by Ultrasonic Irradiation and Their In Vitro Cytotoxicity on Human Keratinocytes Crl-2310. J. Clust. Sci. 2016, 27, 1763–1775. DOI: 10.1007/s10876-016-1040-9.
  • Dash, A.; Ahmed, M. T.; Selvaraj, R. Mesoporous Magnetite Nanoparticles Synthesis Using the Peltophorum Pterocarpum Pod Extract, Their Antibacterial Efficacy against Pathogens and Ability to Remove a Pollutant Dye. J. Mol. Struct. 2019, 1178, 268–273. DOI: 10.1016/j.molstruc.2018.10.042.
  • Hassan, S. S. M.; Abdel-Shafy, H. I.; Mansour, M. S. M. Removal of Pyrene and Benzo (a) Pyrene Micropollutant from Water via Adsorption by Green Synthesized Iron Oxide Nanoparticles. Adv. Nat. Sci.: Nanosci. Nanotechnol. 2018, 9, 015006.
  • Basavaiah, K.; Kahsay, M. H.; RamaDevi, D. Green Synthesis of Magnetite Nanoparticles Using Aqueous Pod Extract of Dolichos Lablab l for an Efficient Adsorption of Crystal Violet. Emergent Mater. 2018, 1, 121–132. DOI: 10.1007/s42247-018-0005-1.
  • Izadiyan, Z.; Shameli, K.; Miyake, M.; Teow, S.-Y.; Peh, S.-C.; Mohamad, S. E.; Taib, S. H. M. Green Fabrication of Biologically Active Magnetic Core-Shell Fe3O4/Au Nanoparticles and Their Potential Anticancer Effect. Mater. Sci. Eng. C: Mater. Biol. Appl. 2019, 96, 51–57. DOI: 10.1016/j.msec.2018.11.008.
  • Izadiyan, Z.; Shameli, K.; Miyake, M.; Hara, H.; Mohamad, S. E. B.; Kalantari, K.; Taib, S. H. M.; Rasouli, E. Cytotoxicity Assay of Plant-Mediated Synthesized Iron Oxide Nanoparticles Using juglans regia Green Husk Extract. Arabian J. Chem. 2020, 13, 2011–2023.
  • Chandraiah, M. R. Facile Synthesis of Zero Valent Iron Magnetic Biochar Composites for pb (ii) Removal from the Aqueous Medium. Alexandria Eng. J. 2016, 55, 619–625.
  • Arasu, M. V.; Arokiyaraj, S.; Viayaraghavan, P.; Kumar, T. S. J.; Duraipandiyan, V.; Al-Dhabi, N. A.; Kaviyarasu, K. One Step Green Synthesis of Larvicidal, and Azo Dye Degrading Antibacterial Nanoparticles by Response Surface Methodology. J. Photochem. Photobiol. B 2019, 190, 154–162. DOI: 10.1016/j.jphotobiol.2018.11.020.
  • Casentini, B.; Michele, G.; Baldi, F. Arsenate and Arsenite Removal from Contaminated Water by Iron Oxides Nanoparticles Formed inside a Bacterial Exopolysaccharide. J. Environ. Chem. Eng. 2019, 7, 102908. DOI: 10.1016/j.jece.2019.102908.
  • Maass, D.; Valério, A.; Lourenço, L. A.; de Oliveira, D.; Hotza, D. Biosynthesis of Iron Oxide Nanoparticles from Mineral Coal Tailings in a Stirred Tank Reactor. Hydrometallurgy 2019, 184, 199–205. DOI: 10.1016/j.hydromet.2019.01.010.
  • Das, K. R.; Kowshik, M.; Kumar, M. K. P.; Kerkar, S.; Shyama, S. K.; Mishra, S. Native Hypersaline Sulphate Reducing Bacteria Contributes to Iron Nanoparticle Formation in Saltpan Sediment: A Concern for Aquaculture. J. Environ. Manage. 2018, 206, 556–564. DOI: 10.1016/j.jenvman.2017.10.078.
  • Daneshvar, M.; Hosseini, M. R. From the Iron Boring Scraps to Superparamagnetic Nanoparticles through an Aerobic Biological Route. J. Hazard. Mater. 2018, 357, 393–400. DOI: 10.1016/j.jhazmat.2018.06.024.
  • Fatemi, M.; Mollania, N.; Momeni-Moghaddam, M.; Sadeghifar, F. Extracellular Biosynthesis of Magnetic Iron Oxide Nanoparticles by bacillus cereus Strain hmh1: Characterization and In Vitro Cytotoxicity Analysis on Mcf-7 and 3t3 Cell Lines. J. Biotechnol. 2018, 270, 1–11. DOI: 10.1016/j.jbiotec.2018.01.021.
  • Cheng, S.; Li, N.; Jiang, L.; Li, Y.; Xu, B.; Zhou, W. Biodegradation of Metal Complex Naphthol Green b and Formation of Iron-Sulfur Nanoparticles by Marine Bacterium Pseudoalteromonas sp CF10-13. Bioresour. Technol. 2019, 273, 49–55. DOI: 10.1016/j.biortech.2018.10.082.
  • Mazumdar, H.; Haloi, N. A Study on Biosynthesis of Iron Nanoparticles by Pleurotus sp. J. Microbiol. Biotechnol. Res. 2017, 1, 39–49.
  • Sidkey, N. M.; Moustafa, Y. M.; Arafa, R. A.; Morsi, R. E.; Elhateir, M. M. Corrosion Resistance and Antimicrobial Activity of Extra-and Intracellular fe (ii) Nanoparticles Biosynthesized via Aspergillus Foetidus ATCC 14916. ACSJ. 2016, 17, 1–10. DOI: 10.9734/ACSJ/2016/28674.
  • Bedi, A.; Singh, B. R.; Deshmukh, S. K.; Adholeya, A.; Barrow, C. J. An Aspergillus Aculateus Strain Was Capable of Producing Agriculturally Useful Nanoparticles via Bioremediation of Iron Ore Tailings. J. Environ. Manage. 2018, 215, 100–107. DOI: 10.1016/j.jenvman.2018.03.049.
  • Mohamed, Y. M.; Azzam, A. M.; Amin, B. H.; Safwat, N. A. Mycosynthesis of Iron Nanoparticles by Alternaria Alternata and Its Antibacterial Activity. Afr. J. Biotechnol. 2015, 14, 1234–1241. DOI: 10.5897/AJB2014.14286.
  • Sarkar, J.; Mollick, M. M. R.; Chattopadhyay, D.; Acharya, K. An Eco-Friendly Route of γ-Fe2O3 Nanoparticles Formation and Investigation of the Mechanical Properties of the Hpmc-γ-Fe2O3 Nanocomposites. Bioprocess Biosyst. Eng. 2017, 40, 351–359. DOI: 10.1007/s00449-016-1702-x.
  • El-Kassas, H. Y.; Aly-Eldeen, M. A.; Gharib, S. M. Green Synthesis of Iron Oxide (Fe3O4) Nanoparticles Using Two Selected Brown Seaweeds: Characterization and Application for Lead Bioremediation. Acta Oceanol. Sin. 2016, 35, 89–98. DOI: 10.1007/s13131-016-0880-3.
  • Mahdavi, M.; Namvar, F.; Ahmad, M.; Mohamad, R. Green Biosynthesis and Characterization of Magnetic Iron Oxide (Fe3O4) Nanoparticles Using Seaweed (Sargassum Muticum) Aqueous Extract. Molecules 2013, 18, 5954–5964. DOI: 10.3390/molecules18055954.
  • Yew, Y. P.; Shameli, K.; Miyake, M.; Kuwano, N.; Khairudin, N. B. B. A.; Mohamad, S. E. B.; Lee, K. X. Green Synthesis of Magnetite (Fe3O4) Nanoparticles Using Seaweed (Kappaphycus Alvarezii) Extract. Nanoscale Res. Lett. 2016, 11, 276.
  • Namvar, F.; Rahman, H. S.; Mohamad, R.; Baharara, J.; Mahdavi, M.; Amini, E.; Chartrand, M. S.; Yeap, S. K. Cytotoxic Effect of Magnetic Iron Oxide Nanoparticles Synthesized via Seaweed Aqueous Extract. Int. J. Nanomed. 2014, 9, 2479.
  • Kanagasubbulakshmi, S.; Kadirvelu, K. Green Synthesis of Iron Oxide Nanoparticles Using Lagenaria Siceraria and Evaluation of Its Antimicrobial Activity. Def. Life Sci. J. 2017, 2, 422–427. DOI: 10.14429/dlsj.2.12277.
  • Subramaniyam, V.; Subashchandrabose, S. R.; Thavamani, P.; Megharaj, M.; Chen, Z.; Naidu, R. Chlorococcum sp. Mm11—A Novel Phyco-Nanofactory for the Synthesis of Iron Nanoparticles. J. Appl. Phycol. 2015, 27, 1861–1869. DOI: 10.1007/s10811-014-0492-2.
  • Noguchi, Y.; Fujiwara, T.; Yoshimatsu, K.; Fukumori, Y. Iron Reductase for Magnetite Synthesis in the Magnetotactic Bacterium Magnetospirillum magnetotacticum. J. Bacteriol. 1999, 181, 2142–2147. DOI: 10.1128/JB.181.7.2142-2147.1999.
  • Vali, H.; Weiss, B.; Li, Y.-L.; Sears, S. K.; Kim, S. S.; Kirschvink, J. L.; Zhang, C. L. Formation of Tabular Single-Domain Magnetite Induced by Geobacter metallireducens gs-15. Proc. Natl. Acad. Sci. 2004, 101, 16121–16126. DOI: 10.1073/pnas.0404040101.
  • Bharde, A.; Rautaray, D.; Bansal, V.; Ahmad, A.; Sarkar, I.; Yusuf, S. M.; Sanyal, M.; Sastry, M. Extracellular Biosynthesis of Magnetite Using Fungi. Small 2006, 2, 135–141. DOI: 10.1002/smll.200500180.
  • Kaul, R. K.; Kumar, P.; Burman, U.; Joshi, P.; Agrawal, A.; Raliya, R.; Tarafdar, J. C. Magnesium and Iron Nanoparticles Production Using Microorganisms and Various Salts. Mater. Sci. Pol. 2012, 30, 254–258. DOI: 10.2478/s13536-012-0028-x.
  • Arulpandi, I.; Kanimozhi, S. Characterization and Cytotoxicity Evaluation of Superparamagnetic Nanoparticles Biosynthesized by Fusarium oxysporum sk. Int. J. Pharm. Sci. Res. 2015, 6, 376.
  • Abdeen, S.; Isaac, R. S. R.; Geo, S.; Sornalekshmi, S.; Rose, A.; Praseetha, P. K. Evaluation of Antimicrobial Activity of Biosynthesized Iron and Silver Nanoparticles Using the Fungi Fusarium oxysporum and Actinomycetes sp. on Human Pathogens. Nano Biomed. Eng. 2013, 5, 39–45.
  • Bhargava, A.; Jain, N.; Barathi, M.; Akhtar, M. S.; Yun, Y.-S.; Panwar, J. Synthesis, Characterization and Mechanistic Insights of Mycogenic Iron Oxide Nanoparticles, Nanotechnology for Sustainable Development, Springer, Cham, 2013, pp. 337–348.
  • Tarafdar, J. C.; Raliya, R. Rapid, Low-Cost, and Ecofriendly Approach for Iron Nanoparticle Synthesis Using Aspergillus oryzae tfr9. J. Nanopart. 2013, 2013, 1–4. DOI: 10.1155/2013/141274.
  • Hsieh, S.; Huang, B. Y.; Hsieh, S. L.; Wu, C. C.; Wu, C. H.; Lin, P. Y.; Huang, Y. S.; Chang, C. W. Green Fabrication of Agar-Conjugated Fe3O4 Magnetic Nanoparticles. Nanotechnology 2010, 21, 445601. DOI: 10.1088/0957-4484/21/44/445601.
  • Shukla, S.; Jadaun, A.; Arora, V.; Sinha, R. K.; Biyani, N.; Jain, V. K. In Vitro Toxicity Assessment of Chitosan Oligosaccharide Coated Iron Oxide nanoparticles. Toxicol. Rep. 2015, 2, 27–39. DOI: 10.1016/j.toxrep.2014.11.002.
  • Chairam, S.; Somsook, E. Starch Vermicelli Template for Synthesis of Magnetic Iron Oxide Nanoclusters. J. Magn. Magn. Mater. 2008, 320, 2039–2043. DOI: 10.1016/j.jmmm.2008.02.168.
  • Ghaseminezhad, S. M.; Shojaosadati, S. A. Evaluation of the Antibacterial Activity of Ag/Fe3O4 Nanocomposites Synthesized Using Starch. Carbohydr. Polym. 2016, 144, 454–463. DOI: 10.1016/j.carbpol.2016.03.007.
  • Abdullah, N. H.; Shameli, K.; Abdullah, E. C.; Abdullah, L. C. A Facile and Green Synthetic Approach toward Fabrication of Starch-Stabilized Magnetite Nanoparticles. Chin. Chem. Lett. 2017, 28, 1590–1596. DOI: 10.1016/j.cclet.2017.02.015.
  • Ansari, F.; Sobhani, A.; Salavati-Niasari, M. Green Synthesis of Magnetic Chitosan Nanocomposites by a New Sol–Gel Auto-Combustion Method. J. Magn. Magn. Mater. 2016, 410, 27–33. DOI: 10.1016/j.jmmm.2016.03.014.
  • Tajik, E.; Naeimi, A.; Amiri, A. Fabrication of Iron Oxide Nanoparticles, and Green Catalytic Application of an Immobilized Novel Iron Schiff on Wood Cellulose. Cellulose 2018, 25, 915–923. DOI: 10.1007/s10570-017-1615-0.
  • Jiao, C.; Cheng, Y.; Fan, W.; Li, J. Synthesis of Agar-Stabilized Nanoscale Zero-Valent Iron Particles and Removal Study of Hexavalent Chromium. Int. J. Environ. Sci. Technol. 2015, 12, 1603–1612. DOI: 10.1007/s13762-014-0524-0.
  • Mohammadi, A.; Daemi, H.; Barikani, M. Fast Removal of Malachite Green Dye Using Novel Superparamagnetic Sodium Alginate-Coated Fe3O4 Nanoparticles. Int. J. Biol. Macromol. 2014, 69, 447–455. DOI: 10.1016/j.ijbiomac.2014.05.042.
  • Anbouhi, T. S.; Esfidvajani, E. M.; Nemati, F.; Haghighat, S.; Sari, S.; Attar, F.; Pakaghideh, A.; Sohrabi, M. J.; Mousavi, S. E.; Falahati, M. Albumin Binding, Anticancer and Antibacterial Properties of Synthesized Zero Valent Iron Nanoparticles. Int. J. Nanomedic. 2019, 14, 243.
  • Guo, S.; Zhu, X.; Yang, C.; Zhang, J.; Zhang, F.; Li, X. Synthesis and Characterization of l-Arginine/Fe3O4 Adsorbent for the Removal of Methyl Orange from Aqueous Solutions. Ionics 2019, 25, 1323–1328. DOI: 10.1007/s11581-019-02844-6.
  • Belachew, N.; Devi, D. R.; Basavaiah, K. Facile Green Synthesis of l-Methionine Capped Magnetite Nanoparticles for Adsorption of Pollutant Rhodamine b. J. Mol. Liq. 2016, 224, 713–720. DOI: 10.1016/j.molliq.2016.10.089.
  • Lai, Y.; Yin, W.; Liu, J.; Xi, R.; Zhan, J. One-Pot Green Synthesis and Bioapplication of l-Arginine-Capped Superparamagnetic Fe3O4 Nanoparticles. Nanoscale Res. Lett. 2010, 5, 302–307. DOI: 10.1007/s11671-009-9480-x.
  • Bagherpour, A. R.; Kashanian, F.; Ebrahimi, S. A. S.; Habibi-Rezaei, M. L-Arginine Modified Magnetic Nanoparticles: Green Synthesis and Characterization. Nanotechnology 2018, 29, 075706. DOI: 10.1088/1361-6528/aaa2b5.
  • Chiou, J.-R.; Lai, B.-H.; Hsu, K.-C.; Chen, D.-H. One-Pot Green Synthesis of Silver/Iron Oxide Composite Nanoparticles for 4-Nitrophenol Reduction. J. Hazard. Mater. 2013, 248, 394–400.
  • Sreeja, V.; Jayaprabha, K. N.; Joy, P. A. Water-Dispersible Ascorbic-Acid-Coated Magnetite Nanoparticles for Contrast Enhancement in MRI. Appl. Nanosci. 2015, 5, 435–441. DOI: 10.1007/s13204-014-0335-0.
  • Zasońska, B. A.; Pustovyy, V. I.; Babinskiy, A. V.; Palyvoda, O. M.; Chekhun, V. F.; Todor, I.; Petrovský, E.; Kuzmenko, O. I.; Horák, D. Combined Antitumor Effect of Surface-Modified Superparamagnetic Maghemite Nanoparticles and a Vitamin E Derivative on Experimental Walker-256 Mammary Gland Carcinosarcoma. J. Magn. Magn. Mater. 2019, 471, 381–387. DOI: 10.1016/j.jmmm.2018.10.006.
  • Vijayakumar, M. R.; Muthu, M. S.; Singh, S. Copolymers of Poly(lactic acid) and D-α-tocopheryl Polyethylene Glycol 1000 Succinate-Based Nanomedicines: Versatile Multifunctional Platforms for Cancer Diagnosis and Therapy. Expert Opin. Drug Deliv. 2013, 10, 529–543. DOI: 10.1517/17425247.2013.758632.
  • Wang, L.; Zhao, Y.; Lu, R.; Peng, Y.; Guo, L.; Hai, L.; Guan, M.; Wu, Y. Preparation and Characterization of Novel Brain Targeting Magnetic Nanoparticles Modified with Ascorbic Acid. Nano. 2018, 13, 1850008. DOI: 10.1142/S179329201850008X.
  • Aghazadeh, M.; Karimzadeh, I.; Ganjali, M. R.; Morad, M. M. A Novel Preparation Method for Surface Coated Superparamagnetic Fe3O4 Nanoparticles with Vitamin C and Sucrose. Mater. Lett. 2017, 196, 392–395. DOI: 10.1016/j.matlet.2017.03.064.
  • Liu, S.; Yang, Z.; Liu, L.; Li, M.; Wang, Y.; Lv, W.; Chen, X.; Zhao, X.; Zhu, P.; Wang, G. Metallic Iron Doped Vitamin B12/c as Efficient Nonprecious Metal Catalysts for Oxygen Reduction Reaction. Int. J. Hydrogen Energy 2018, 43, 16230–16239. DOI: 10.1016/j.ijhydene.2018.06.156.
  • Wang, Z.; Zhu, H.; Wang, X.; Yang, F.; Yang, X. One-Pot Green Synthesis of Biocompatible Arginine-Stabilized Magnetic Nanoparticles. Nanotechnology 2009, 20, 465606. DOI: 10.1088/0957-4484/20/46/465606.
  • Nosrati, H.; Salehiabar, M.; Attari, E.; Davaran, S.; Danafar, H.; Manjili, H. K. Green and One‐Pot Surface Coating of Iron Oxide Magnetic Nanoparticles with Natural Amino Acids and Biocompatibility Investigation. Appl. Organomet. Chem. 2018, 32, e4069.
  • Krishna, R.; Titus, E.; Krishna, R.; Bardhan, N.; Bahadur, D.; Gracio, J. Wet-chemical green synthesis of L-lysine amino acid stabilized biocompatible iron-oxide magnetic nanoparticles. J. Nanosci. Nanotechnol. 2012, 12, 6645–6651. DOI: 10.1166/jnn.2012.4571.
  • Nisticò, R.; Franzoso, F.; Cesano, F.; Scarano, D.; Magnacca, G.; Parolo, M. E.; Carlos, L. Chitosan-Derived Iron Oxide Systems for Magnetically Guided and Efficient Water Purification Processes from Polycyclic Aromatic Hydrocarbons. ACS Sustain. Chem. Eng. 2017, 5, 793–801. DOI: 10.1021/acssuschemeng.6b02126.
  • Janardhanan, S. K.; Ramasamy, I.; Nair, B. U. Synthesis of Iron Oxide Nanoparticles Using Chitosan and Starch Templates. Transition. Met. Chem. 2008, 33, 127–131.
  • Lohrasbi, S.; Kouhbanani, M. A. J.; Beheshtkhoo, N.; Ghasemi, Y.; Amani, A. M.; Taghizadeh, S. Green Synthesis of Iron Nanoparticles Using Plantago Major Leaf Extract and Their Application as a Catalyst for the Decolorization of Azo Dye. Bionanoscience 2019, 9, 317–326. DOI: 10.1007/s12668-019-0596-x.
  • Yi, Y.; Tu, G.; Tsang, P. E.; Xiao, S.; Fang, Z. Green Synthesis of Iron-Based Nanoparticles from Extracts of Nephrolepis Auriculata and Applications for cr (vi) Removal. Mater. Lett. 2019, 234, 388–391. DOI: 10.1016/j.matlet.2018.09.137.
  • Saboktakin, M. R.; Maharramov, A.; Ramazanov, M. A. Synthesis and Characterization of Superparamagnetic Nanoparticles Coated with Carboxymethyl Starch (Cms) for Magnetic Resonance Imaging Technique. Carbohydr. Polym. 2009, 78, 292–295. DOI: 10.1016/j.carbpol.2009.03.042.
  • Daniel, S. K.; Vinothini, G.; Subramanian, N.; Nehru, K.; Sivakumar, M. Biosynthesis of Cu, Zvi, and Ag Nanoparticles Using Dodonaea Viscosa Extract for Antibacterial Activity against Human Pathogens. J. Nanopart. Res. 2013, 15, 1319.
  • Dinali, R.; Ebrahiminezhad, A.; Manley-Harris, M.; Ghasemi, Y.; Berenjian, A. Iron Oxide Nanoparticles in Modern Microbiology and Biotechnology. Crit. Rev. Microbiol. 2017, 43, 493–507. DOI: 10.1080/1040841X.2016.1267708.
  • Ye, Q.; Chen, W.; Huang, H.; Tang, Y.; Wang, W.; Meng, F.; Wang, H.; Zheng, Y. Iron and Zinc Ions, Potent Weapons against Multidrug-Resistant Bacteria. Appl. Microbiol. Biotechnol. 2020, 104, 5213–5227.
  • Azam, A.; Ahmed, A. S.; Oves, M.; Khan, M. S.; Habib, S. S.; Memic, A. Antimicrobial Activity of Metal Oxide Nanoparticles against Gram-Positive and Gram-Negative Bacteria: A Comparative Study. Int. J. Nanomed. 2012, 7, 6003.
  • Khatami, M.; Alijani, H.; Sharifi, I.; Sharifi, F.; Pourseyedi, S.; Kharazi, S.; Lima Nobre, M. A.; Khatami, M. Leishmanicidal Activity of Biogenic Fe3O4 Nanoparticles. Sci. Pharm. 2017, 85, 36. DOI: 10.3390/scipharm85040036.
  • Iqbal, J.; Abbasi, B. A.; Ahmad, R.; Shahbaz, A.; Zahra, S. A.; Kanwal, S.; Munir, A.; Rabbani, A.; Mahmood, T. Biogenic Synthesis of Green and Cost Effective Iron Nanoparticles and Evaluation of Their Potential Biomedical Properties. J. Mol. Struct. 2020, 1199, 126979. DOI: 10.1016/j.molstruc.2019.126979.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.