356
Views
3
CrossRef citations to date
0
Altmetric
Articles

Facile synthesis of nanostructured trirutile antimonates M(II)Sb2O6 (M = Co, Cu, Ni, Fe) and its visible photocatalytic studies

& ORCID Icon
Pages 151-160 | Received 25 Aug 2020, Accepted 01 Dec 2020, Published online: 28 Dec 2020

References

  • Maeda, K.; Domen, K. Solid Solution of GaN and ZnO as a Stable Photocatalyst for Overall Water Splitting Under Visible Light. Chem. Mater. 2010, 22, 612–623. DOI: 10.1021/cm901917a.
  • Han, C.; Qi, M. Y.; Tang, Z. R.; Gong, J.; Xu, Y. J. Gold Nanorods-Based Hybrids with Tailored Structures for Photoredox Catalysis: fundamental Science, Materials Design and Applications. Nano Today 2019, 27, 48–72. DOI: 10.1016/j.nantod.2019.05.001.
  • Moniz, S. J. A.; Shevlin, S. A.; Martin, D. J.; Guo, Z.-X.; Tang, J. Visible Light Driven Heterojunction Photocatalysts for Water Splitting – A Critical Review. Energy Environ. Sci. 2015, 8, 731–759. DOI: 10.1039/C4EE03271C.
  • Balasubramaniam, M.; Balakumar, S. A Review on Multifunctional Attributes of Zinc Antimonate Nanostructures Toward Energy and Environmental Applications. Chem. Pap. 2020, 74, 55–75. DOI: 10.1007/s11696-019-00964-x.
  • Zhang, F.; Li, Y. H.; Li, J. Y.; Tang, Z. R.; Xu, Y. J. 3D Graphene-Based Gel Photocatalysts for Environmental Pollutants Degradation. Environ. Pollut. 2019, 253, 365–376. DOI: 10.1016/j.envpol.2019.06.089.
  • Zhang, N.; Yang, M. Q.; Liu, S.; Sun, Y.; Xu, Y. J. Waltzing with the Versatile Platform of Graphene to Synthesize Composite Photocatalysts. Chem. Rev. 2015, 115, 10307–10377. DOI: 10.1021/acs.chemrev.5b00267.
  • Lu, K. Q.; Xin, X.; Zhang, N.; Tang, Z. R.; Xu, Y. J. Photoredox Catalysis over Graphene Aerogel-Supported Composites. J. Mater. Chem. A. 2018, 6, 4590–4604. DOI: 10.1039/C8TA00728D.
  • Wu, S.; Li, G.; Zhang, Y.; Zhang, W. Surface Photoelectric and Visible Light Driven Photocatalytic Properties of Zinc Antimonate-Based Photocatalysts. Mater. Res. Bull. 2013, 48, 1117–1121. DOI: 10.1016/j.materresbull.2012.12.007.
  • Dutta, D. P.; Ballal, A.; Singh, A.; Fulekar, M. H.; Tyagi, A. K. Multifunctionality of Rare Earth Doped Nano ZnSb2O6, CdSb2O6 and BaSb2O6: photocatalytic Properties and White Light Emission. Dalton Trans. 2013, 42, 16887–16897. DOI: 10.1039/c3dt51966j.
  • Mizoguchi, H.; Woodward, P. M. Electronic Structure Studies of Main Group Oxides Possessing Edge-Sharing Octahedra: implications for the Design of Transparent Conducting Oxides. Chem. Mater. 2004, 16, 5233–5248. DOI: 10.1021/cm049249w.
  • Jamal, A.; Rahman, M. M.; Khan, S. B.; Faisal, M.; Akhtar, K.; Rub, M. A.; Asiri, A. M.; Al-Youbi, A. O. Cobalt Doped Antimony Oxide Nano-Particles Based Chemical Sensor and Photo-Catalyst for Environmental Pollutants. Appl. Surf. Sci. 2012, 261, 52–58. DOI: 10.1016/j.apsusc.2012.07.066.
  • Zhang, M.; Chen, L.; Yao, S.; Long, Y.; Li, W.; Wang, Z. Effect of Calcination Temperature on the Photocatalytic Activity of CaSb2O6 Nanoparticles Prepared by co-Precipitation Method. Catal. Commun. 2014, 48, 29–32. DOI: 10.1016/j.catcom.2014.01.013.
  • Kikuchi, N.; Hosono, H.; Kawazoe, H.; Tanegashima, O.; Ota, I.; Kimura, Y. Carrier Generation in Wide-Gap Conductor, Zinc Antimonate. J. Amer. Ceram. Soc. 2005, 88, 2793–2797. DOI: 10.1111/j.1551-2916.2005.00528.x.
  • Matsushima, S.; Tanizaki, T.; Nakamura, H.; Nonaka, M.; Arai, M. First Principles Energy Band Calculation for ZnSb2O6 with Trirutile-Type Structure. Chem. Lett. 2001, 30, 1010–1011. DOI: 10.1246/cl.2001.1010.
  • Liu, W.; Lin, P.; Jin, H.; Xue, H.; Zhang, Y.; Li, Z. Nanocrystalline ZnSb2O6: Hydrothermal Synthesis, Electronic Structure and Photocatalytic Activity. J. Mol. Catal. A: Chem. 2011, 349, 80–85. DOI: 10.1016/j.molcata.2011.08.023.
  • Guillen-Bonilla, A.; Rodriguez-Betancourtt, V. M.; Flores-Martinez, M.; Blanco-Alonso, O.; Reyes-Gomez, J.; Gildo-Ortiz, L.; Guillen-Bonilla, H. Dynamic Response of CoSb2O6 Trirutile-Type Oxides in a CO2 Atmosphere at Low-Temperatures. Sensors (Basel) 2014, 14, 15802–15814. VolDOI: 10.3390/s140915802.
  • Zhao, D.; Tian, C.; Tang, S.; Liu, Y.; Chen, L. High Temperature Oxidation Behavior of Cobalt Triantimonide Thermoelectric Material. J. Alloys.Compd. 2010, 504, 552–558. DOI: 10.1016/j.jallcom.2010.05.160.
  • Michel, C. R.; Contreras, N. L.; Lopez-Alvarez, M. A.; Martinez-Preciado, A. H. Gas Selectivity of Nanostructured ZnSb2O6 Synthesized by a Colloidal Method. Sens. Actuat. B: Chem 2012, 171-172, 686–690. DOI: 10.1016/j.snb.2012.05.055.
  • Jiao, S.; Pang, G.; Liang, H.; Chen, Y.; Feng, S. Hydrothermal Synthesis and Magnetic Properties of CuSb2O6 Nanoparticles and Nanorods. J. Nanopart. Res. 2007, 9, 605–610. DOI: 10.1007/s11051-006-9083-8.
  • Shalu, A.; Uma, S.; Nagarajan, R. Magnetic and Photocatalytic Properties of Nano-Sized Sulfur-Doped Trirutile Oxide, CuSb2O6. Mater. Sci. Semicond. Process. 2020, 119, 105226. VolDOI: 10.1016/j.mssp.2020.105226.
  • Guillén-Bonilla, A.; Rodríguez-Betancourtt, V. M.; Guillén-Bonilla, J. T.; Sánchez-Martínez, A.; Gildo-Ortiz, L.; Santoyo-Salazar, J.; Morán-Lázaro, J. P.; Guillén-Bonilla, H.; Blanco-Alonso, O. A Novel CO and C3H8 Sensor Made of CuSb2O6 Nanoparticles. Ceram. Int. 2017, 43, 13635–13644. VolDOI: 10.1016/j.ceramint.2017.07.073.
  • Han, J.; Xu, M.; Jia, M.; Liu, T. M., Evaluation of Reduced Graphene Oxide-Supported NiSb2O6 Nanocomposites for Reversible Lithium Storage. Ceram. Int. 2016, 42, 14782–14787. DOI: 10.1016/j.ceramint.2016.06.108.
  • Singh, A.; Singh, A.; Singh, S.; Tandon, P. Nickel Antimony Oxide (NiSb2O6): a Fascinating Nanostructured Material for Gas Sensing Application. Chem. Phys. Lett. 2016, 646, 41–46. Volpp DOI: 10.1016/j.cplett.2016.01.005.
  • Arunkumar, N.; Vijayaraghavan, R. Enhanced Photocatalytic Activity of Nanocrystalline N-Doped ZnSb2O6: role of N Doping, Cation Ordering, Particle Size and Crystallinity. RSC Adv. 2014, 4, 65223–65231. DOI: 10.1039/C4RA12612B.
  • Boobalan, K.; Vijayaraghavan, R.; Chidambaram, K.; Kamachi Mudali, U. M.; Raj, B. Preparation and Characterization of Nanocrystalline Zirconia Powders by the Glowing Combustion Method. J. Am. Ceram. Soc. 2010, 93, 3651–3656. DOI: 10.1111/j.1551-2916.2010.03947.x.
  • Patil, K. C.; Hegde, M. S.; Rattan, T. M.; Aruna, S. T. Chemistry of Combustion Synthesis, Properties and Applications Nanocrystalline Oxide Materials, 2008. World Scientific: Singapore. pp. 210–255
  • Jang, J.; Kim, S. J. Photoelectrochemical Properties of Nanocrystalline Sb6O13, MgSb2O6 and ZnSb2O6-Based Electrodes for Dye-Sensitized Solar Cells. Jpn. J. Appl. Phys. 2012, 51, 10NE23–10NE24. DOI: 10.7567/JJAP.51.10NE23.
  • Nikulin, A. Y.; Zvereva, E. A.; Nalbandyan, V. B.; Shukaev, I. L.; Kurbakov, A. I.; Kuchugura, M. D.; Raganyan, G. V.; Popov, Y. V.; Ivanchenko, V. D.; Vasiliev, A. N. Preparation and Characterization of Metastable Trigonal Layered MSb2O6 Phases (M = Co, Ni, Cu, Zn, and Mg) and Considerations on FeSb2O6. Dalton Trans. 2017, 46, 6059–6068. DOI: 10.1039/c6dt04859e.
  • Maimone, D. T.; Christian, A. B.; Neumeier, J. J.; Granado, E. Lattice Dynamics of ASb2O6 (a = Cu, Co) with Trirutile Structure. Phys. Rev. B. 2018, 97, 1–10. Volpp DOI: 10.1103/PhysRevB.97.104304.
  • Prokofiev, A. V.; Ritter, F.; Assmus, W.; Gibson, B. J.; Kremer, R. K. Crystal Growth and Characterization of the Magnetic Properties of CuSb2O6. J. Cryst. Growth 2003, 247, 457–466. DOI: 10.1016/S0022-0248(02)02062-6.
  • Maimone, D. T.; Christian, A. B.; Neumeier, J. J.; Granado, E. Coupling of Phonons with Orbital Dynamics and Magnetism in CuSb2O6. Phys. Rev. B. 2018, 97, 1–5. DOI: 10.1103/PhysRevB.97.174415.
  • Bahfenne, S.; Frost, R. L. A Review of the Vibrational Spectroscopic Studies of Arsenite, Antimonite and Antimonate Minerals. Appl. Spectrosc. Rev. 2010, 45, 101–129. DOI: 10.1080/05704920903435839.
  • Haeuseler, H. Infrared and Raman Spectra and Normal Coordinate Calculations on Trirutile-Type Compounds. Spectrochim. Acta 1981, 37, 487–495. DOI: 10.1016/0584-8539(81)80036-0.
  • Giere, E. O.; Brahimi, A.; Deiseroth, H. J.; Reinen, D. The Geometry and Electronic Structure of the Cu2+ Polyhedra in Trirutile-Type Compounds Zn (Mg)1-xCuxSb2O6 and the Dimorphism of CuSb2O6: A Solid State and EPR Study. J. Solid State Chem. 1997, 131, 263–274. DOI: 10.1006/jssc.1997.7374.
  • Husson, E.; Repelin, Y.; Brusset, H.; Cerez, A. Specters de Vibration et Calcul du Champ de Force Des Antimoniates et Des Tantalates de Structure Trirutile. Spectrochim. Acta A 1979, 35, 1177–1187. volpp DOI: 10.1016/0584-8539(79)80100-2.
  • Kubelka, P.; Munk, F. Ein Beitrag Zur Optik Der Farbanstriche. Z. Techn. Phys. 1931, 12, 593–601.
  • Sheets, W. C.; Stampler, E. S.; Bertoni, M. I.; Sasaki, M.; Marks, T. J.; Mason, T. O.; Poeppelmeier, K. R. Silver Delafossite Oxides. Inorg. Chem. 2008, 47, 2696–2705. DOI: 10.1021/ic702197h.
  • Tauc, J.; Grigorovici, R.; Vancu, A. Optical Properties and Electronic Structure of Amorphous Germanium. Phys. Stat. Sol. (b) 1966, 15, 627–637. DOI: 10.1002/pssb.19660150224.
  • Sahoo, P. P.; Maggard, P. A. Crystal Chemistry, Band engineering, and photocatalytic activity of the LiNb3O8-CuNb3O8 solid solution. Inorg. Chem. 2013, 52, 4443–4450. DOI: 10.1021/ic302649s.
  • Kaur, J.; Sharma, M.; Pandey, O. P. Structural and Optical Studies of Undoped and Copper Doped Zinc Sulphide Nanoparticles for Photocatalytic Application. Superlattices Microst 2015, 77, 35–53. DOI: 10.1016/j.spmi.2014.10.032.
  • Theyvaraju, D.; Muthukumaran, S. Preparation, Structural, Photoluminescence and Magnetic Studies of Cu Doped ZnO Nanoparticles co-Doped with Ni by Sol–Gel Method. Phys. E 2015, 74, 93–100. DOI: 10.1016/j.physe.2015.06.012.
  • Huang, H.; Liu, K.; Chen, K.; Zhang, Y.; Zhang, Y.; Wang, S. Ce and F Comodification on the Crystal Structure and Enhanced Photocatalytic Activity of Bi2WO6 Photocatalyst Under Visible Light Irradiation. J. Phys. Chem. C. 2014, 118, 14379–−14387. DOI: 10.1021/jp503025b.
  • Pan, L.; Liu, X.; Sun, Z.; Sun, C. Q. Nano Photocatalysts via Microwave Assisted Solution-Phase Synthesis for Efficient Photocatalysis. J. Mater. Chem. A. 2013, 1, 8299–8326. DOI: 10.1039/c3ta10981j.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.