287
Views
8
CrossRef citations to date
0
Altmetric
Articles

Curcumin reduced gold nanoparticles synergistically induces ROS mediated apoptosis in MCF-7 cancer cells

, &
Pages 601-613 | Received 24 Aug 2020, Accepted 01 Dec 2020, Published online: 31 Jan 2021

References

  • World Health Organization. WHO Report on Cancer: Setting Priorities, Investing Wisely and Providing Care for All. World Health Organization: Geneva, Switzerland, 2020; pp 25–36
  • Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R. L.; Torre, L. A.; Jemal, A. Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2018, 68, 394–424. DOI: 10.3322/caac.21492.
  • Yardley, D. A. Drug Resistance and the Role of Combination Chemotherapy in Improving Patient Outcomes. Int. J. Breast Cancer 2013, , 2013, 137414 DOI: 10.1155/2013/137414.
  • Senapati, S.; Mahanta, A. K.; Kumar, S.; Maiti, P. Controlled Drug Delivery Vehicles for Cancer Treatment and Their performance. Signal Transduct. Target Ther. 2018, 3, 7 DOI: 10.1038/s41392-017-0004-3.
  • Choudhari, A. S.; Mandave, P. C.; Deshpande, M.; Ranjekar, P.; Prakash, O. Phytochemicals in Cancer Treatment: From Preclinical Studies to Clinical Practice. Front. Pharmacol. 2019, 10, 1614 DOI: 10.3389/fphar.2019.01614.
  • Jagetia, G. C.; Aggarwal, B. B. Spicing up of the Immune System by Curcumin. J. Clin. Immunol. 2007, 27, 19–35. DOI: 10.1007/s10875-006-9066-7.
  • Teiten, M. H.; Eifes, S.; Dicato, M.; Diederich, M. Curcumin-The Paradigm of a multi-target natural compound with applications in cancer prevention and treatment . Toxins (Basel) 2010, 2, 128–162. DOI: 10.3390/toxins2010128.
  • Karunagaran, D.; Rashmi, R.; Kumar, T. R. S. Induction of Apoptosis by Curcumin and Its Implications for Cancer Therapy. Curr. Cancer Drug Targets. 2005, 5, 117–129. DOI: 10.2174/1568009053202081.
  • Ravindran, J.; Prasad, S.; Aggarwal, B. B. Curcumin and Cancer Cells: How Many Ways Can Curry Kill Tumor Cells Selectively? AAPS J. 2009, 11, 495–510.
  • Kunnumakkara, A. B.; Bordoloi, D.; Harsha, C.; Banik, K.; Gupta, S. C.; Aggarwal, B. B. Curcumin Mediates Anticancer Effects by Modulating Multiple Cell Signaling Pathways. Clin. Sci. (Lond) 2017, 131, 1781–1799. DOI: 10.1042/CS20160935.
  • Subramani, P. A.; Panati, K.; Narala, V. R. Curcumin Nanotechnologies and Its Anticancer Activity. Nutr. Cancer. 2017, 69, 381–393. DOI: 10.1080/01635581.2017.1285405.
  • Katti, K. V.; Kannan, R.; Katti, K. K.; Nune, S. US Patent. 8333994, December 18, 2012.
  • Gangwar, R. K.; Dhumale, V. A.; Kumari, D.; Nakate, U. T.; Gosavi, S. W.; Sharma, R. B.; Kale, S. N.; Datar, S. Conjugation of Curcumin with PVP Capped Gold Nanoparticles for Improving Bioavailability. Mater. Sci. Eng. C. 2012, 32, 2659–2663.
  • Manju, S.; Sreenivasan, K. Gold Nanoparticles Generated and Stabilized by Water Soluble curcumin-polymer conjugate: blood compatibility evaluation and targeted drug delivery onto cancer cells. J. Colloid Interface Sci. 2012, 368, 144–151. DOI: 10.1016/j.jcis.2011.11.024.
  • Sindhu, K.; Rajaram, A.; Sreeram, K. J.; Rajaram, R. Curcumin Conjugated Gold Nanoparticle Synthesis and Its Biocompatibility. RSC Adv. 2014, 4, 1808–1818. DOI: 10.1039/C3RA45345F.
  • Nambiar, S.; Osei, E.; Fleck, A.; Darko, J.; Mutsaers, A. J.; Wettig, S. Synthesis of Curcumin-Functionalized Gold Nanoparticles and Cytotoxicity Studies in Human Prostate Cancer Cell Line. Appl. Nanosci. 2018, 8, 347–357. DOI: 10.1007/s13204-018-0728-6.
  • Khandelwal, P.; Alam, A.; Choksi, A.; Chattopadhyay, S.; Poddar, P. Retention of Anticancer Activity of Curcumin after Conjugation with Fluorescent Gold Quantum Clusters: An in Vitro and in Vivo Xenograft Study. ACS Omega. 2018, 3, 4776–4785. DOI: 10.1021/acsomega.8b00113.
  • Singh, P.; Pandit, S.; Mokkapati, V. R. S. S.; Garg, A.; Ravikumar, V.; Mijakovic, I. Gold Nanoparticles in Diagnostics and Therapeutics for Human Cancer. IJMS 2018, 19, 1979. DOI: 10.3390/ijms19071979.
  • Chanda, N.; Shukla, R.; Zambre, A.; Mekapothula, S.; Kulkarni, R. R.; Katti, K.; Bhattacharyya, K.; Fent, G. M.; Casteel, S. W.; Boote, E. J.; et al. An Effective Strategy for the Synthesis of Biocompatible Gold Nanoparticles Using Cinnamon Phytochemicals for Phantom CT Imaging and Photoacoustic Detection of Cancerous Cells. Pharm. Res. 2011, 28, 279–291. DOI: 10.1007/s11095-010-0276-6.
  • Chanda, N.; Kattumuri, V.; Shukla, R.; Zambre, A.; Katti, K.; Upendran, A.; Kulkarni, R. R.; Kan, P.; Fent, G. M.; Casteel, S. W.; et al. Bombesin Functionalized Gold Nanoparticles Show in Vitro and in Vivo Cancer Receptor Specificity. Proc. Natl. Acad. Sci. U S A 2010, 107, 8760–8765. DOI: 10.1073/pnas.1002143107.
  • Balakrishnan, S.; Bhat, F. A.; Raja Singh, P.; Mukherjee, S.; Elumalai, P.; Das, S.; Patra, C. R.; Arunakaran, J. Gold Nanoparticle-Conjugated Quercetin Inhibits Epithelial-Mesenchymal Transition, Angiogenesis and Invasiveness via EGFR/VEGFR-2-Mediated Pathway in Breast Cancer. Cell Prolif. 2016, 49, 678–697. DOI: 10.1111/cpr.12296.
  • Shukla, R.; Nune, S. K.; Chanda, N.; Katti, K.; Mekapothula, S.; Kulkarni, R. R.; Welshons, W. V.; Kannan, R.; Katti, K. V. Soybeans as a Phytochemical Reservoir for the Production and Stabilization of Biocompatible Gold Nanoparticles. Small 2008, 4, 1425–1436. DOI: 10.1002/smll.200800525.
  • Nune, S. K.; Chanda, N.; Shukla, R.; Katti, K.; Kulkarni, R. R.; Thilakavathy, S.; Mekapothula, S.; Kannan, R.; Katti, K. V. Green Nanotechnology from Tea: Phytochemicals in Tea as Building Blocks for Production of Biocompatible Gold Nanoparticles. J. Mater. Chem. 2009, 19, 2912–2920. DOI: 10.1039/b822015h.
  • Kondath, S.; Srinivas Raghavan, B.; Anantanarayanan, R.; Rajaram, R. Synthesis and Characterisation of Morin Reduced Gold Nanoparticles and Its Cytotoxicity in MCF-7 Cells. Chem. Biol. Interact. 2014, 224, 78–88. DOI: 10.1016/j.cbi.2014.09.025.
  • Bhuvanasree, S. R.; Sindhu, K.; Rajaram, A.; Rajaram, R. Kaempferol Mediated Synthesis of Gold Nanoparticles and Their Cytotoxic Effects on MCF-7 Cancer Cell Line. Process Biochem. 2015, 50, 1966–1976.
  • Rajendran, I.; Dhandapani, H.; Anantanarayanan, R.; Rajaram, R. Apigenin Mediated Gold Nanoparticle Synthesis and Their anti-Cancer Effect on Human Epidermoid Carcinoma (A431) Cells. RSC Adv. 2015, 63, 51055–51066.
  • Ramalingam, V.; Revathidevi, S.; Shanmuganayagam, T.; Muthulakshmi, L.; Rajaram, R. Biogenic Gold Nanoparticles Induce Cell Cycle Arrest through Oxidative Stress and Sensitize Mitochondrial Membranes in A549 Lung Cancer Cells. RSC Adv. 2016, 6, 20598–20608. DOI: 10.1039/C5RA26781A.
  • Zheng, K.; Setyawati, M. I.; Leong, D. T.; Xie, J. Antimicrobial Gold Nanoclusters. ACS Nano. 2017, 11, 6904–6910. DOI: 10.1021/acsnano.7b02035.
  • Setyawati, M. I.; Tay, C. Y.; Bay, B. H.; Leong, D. T. Gold Nanoparticles Induced Endothelial Leakiness Depends on Particle Size and Endothelial Cell Origin. ACS Nano. 2017, 11, 5020–5030. DOI: 10.1021/acsnano.7b01744.
  • Wang, J.; Zhang, L.; Peng, F.; Shi, X.; Leong, D. T. Targeting Endothelial Cell Junctions with Negatively Charged Gold Nanoparticles. Chem. Mater. 2018, 30, 3759–3767. DOI: 10.1021/acs.chemmater.8b00840.
  • Zhu, J.; Sevencan, C.; Zhang, M.; McCoy, R. S. A.; Ding, X.; Ye, J.; Xie, J.; Ariga, K.; Feng, J.; Bay, B. H.; Leong, D. T. Increasing the Potential Interacting Area of Nanomedicine Enhances Its Homotypic Cancer Targeting Efficacy. ACS Nano. 2020, 14, 3259–3271. DOI: 10.1021/acsnano.9b08798.
  • Tang, S. L. Y.; Smith, R. L.; Poliakoff, M. Principles of Green Chemistry: productively. Green Chem. 2005, 7, 761–762. DOI: 10.1039/b513020b.
  • Yue, H.; Hu, Y. J.; Huang, H. G.; Jiang, S.; Tu, B. Development of Morin-Conjugated Au Nanoparticles: Exploring the Interaction Efficiency with BSA Using Spectroscopic Methods. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014, 130, 402–410. DOI: 10.1016/j.saa.2014.04.022.
  • Shang, L.; Wang, Y.; Jiang, J.; Dong, S. pH-dependent protein conformational changes in albumin:gold nanoparticle bioconjugates: a spectroscopic study . Langmuir. 2007, 23, 2714–2721. DOI: 10.1021/la062064e.
  • Walczyk, D.; Bombelli, F. B.; Monopoli, M. P.; Lynch, I.; Dawson, K. A. What the Cell “ "sees" in bionanoscience” . J. Am. Chem. Soc. 2010, 132, 5761–5768. DOI: 10.1021/ja910675v.
  • Fratoddi, I.; Venditti, I.; Cametti, C.; Russo, M. V. How Toxic Are Gold Nanoparticles? The State-of-the-Art. Nano Res. 2015, 8, 1771–1799. DOI: 10.1007/s12274-014-0697-3.
  • Patel, P. B.; Thakkar, V. R.; Patel, J. S. Cellular Effect of Curcumin and Citral Combination on Breast Cancer Cells: Induction of Apoptosis and Cell Cycle Arrest. J. Breast Cancer. 2015, 18, 225–234. DOI: 10.4048/jbc.2015.18.3.225.
  • Paino, I. M. M.; Marangoni, V. S.; de Oliveira, R. d C. S.; Antunes, L. M. G.; Zucolotto, V. Cyto and Genotoxicity of Gold Nanoparticles in Human Hepatocellular Carcinoma and Peripheral Blood Mononuclear Cells. Toxicol. Lett. 2012, 215, 119–125. DOI: 10.1016/j.toxlet.2012.09.025.
  • Matai, I.; Sachdev, A.; Gopinath, P. Multicomponent 5-fluorouracil Loaded PAMAM Stabilized-Silver Nanocomposites Synergistically Induce Apoptosis in Human Cancer Cell. Biomater. Sci. 2015, 3, 457–468. DOI: 10.1039/C4BM00360H.
  • Pavlov, V.; Lin, P. K. T.; Rodilla, V. Biochemical Effects and Growth Inhibition in MCF-7 Cells Caused by Novel Sulphonamido Oxa-Polyamine Derivatives. Cell Mol. Life Sci. 2002, 59, 715–723. DOI: 10.1007/s00018-002-8460-4.
  • Abdel-Ghany, S.; Mahfouz, M.; Ashraf, N.; Sabit, H.; Cevik, E.; El-Zawahri, M. Gold Nanoparticles Induce G2/M Cell Cycle Arrest and Enhance the Expression of E-Cadherin in Breast Cancer Cells. Inorg. Nano-Met. Chem. 2020, 50, 926–932. DOI: 10.1080/24701556.2020.1728553.
  • Cho, E. C.; Au, L.; Zhang, Q.; Xia, Y. The Effects of Size, shape, and surface functional group of gold nanostructures on their adsorption and internalization by cells. Small. 2010, 6, 517–522. DOI: 10.1002/smll.200901622.
  • Lynch, I.; Dawson, K. A. Protein-Nanoparticle Interactions. Nano Today. 2008, 3, 40–47. DOI: 10.1016/S1748-0132(08)70014-8.
  • Wang, F.; Yu, L.; Monopoli, M. P.; Sandin, P.; Mahon, E.; Salvati, A.; Dawson, K. A. The Biomolecular Corona is Retained during Nanoparticle Uptake and Protects the Cells from the Damage Induced by Cationic Nanoparticles Until Degraded in the Lysosomes. Nanomedicine. 2013, 9, 1159–1168. DOI: 10.1016/j.nano.2013.04.010.
  • Pan, Y.; Leifert, A.; Ruau, D.; Neuss, S.; Bornemann, J.; Schmid, G.; Brandau, W.; Simon, U. Jahnen-Dechent, W. Gold Nanoparticles of Diameter 1.4 nm Trigger Necrosis by Oxidative Stress and Mitochondrial Damage. Small. 2009, 18, 2067–2076.
  • Gao, L.; Liu, R.; Gao, F.; Wang, Y.; Jiang, X.; Gao, X. Plasmon-mediated generation of reactive oxygen species from near-infrared light excited gold nanocages for photodynamic therapy in vitro. ACS Nano. 2014, 8, 7260–7271. DOI: 10.1021/nn502325j.
  • Kalashnikova, I.; Mazar, J.; Neal, C. J.; Rosado, A. L.; Das, S.; Westmoreland, T. J.; Seal, S. Nanoparticle Delivery of Curcumin Induces Cellular Hypoxia and ROS-Mediated Apoptosis via Modulation of Bcl-2/Bax in Human Neuroblastoma. Nanoscale. 2017, 9, 10375–10387. DOI: 10.1039/C7NR02770B.
  • Andón, F. T.; Fadeel, B. Programmed Cell Death: molecular Mechanisms and Implications for Safety Assessment of Nanomaterials. Acc. Chem. Res. 2013, 46, 733–742. DOI: 10.1021/ar300020b.
  • Lv, Z.; Liu, X.; Zhao, W.; Dong, Q.; Li, F.; Wang, H.; Kong, B. Curcumin Induces Apoptosis in Breast Cancer Cells and Inhibits Tumor Growth in Vitro and in Vivo. Int. J. Clin. Exp. Pathol. 2014, 7, 2818–2824.
  • Choi, S. Y.; Jang, S. H.; Park, J.; Jeong, S.; Park, J. H.; Ock, K. S.; Lee, K.; Yang, S. I.; Joo, S. W.; Ryu, P. D.; Lee, S. Y. Cellular Uptake and Cytotoxicity of Positively Charged Chitosan Gold Nanoparticles in Human Lung Adenocarcinoma Cells. J. Nanopart. Res. 2012, 14, 1234. DOI: 10.1007/s11051-012-1234-5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.