306
Views
8
CrossRef citations to date
0
Altmetric
Articles

Green synthesis of silver nanoparticles using leaf extract of Euphorbia sanguine: an in vitro study of its photocatalytic and melanogenesis inhibition activity

, , , , , , , & show all
Pages 195-203 | Received 21 Aug 2020, Accepted 01 Dec 2020, Published online: 03 Mar 2021

References

  • Khan, S.; Malik, A. Environmental and Health Effects of Textile Industry Wastewater. In Environmental Deterioration and Human Health; Malik, A., Grohmann, E., Akhtar, R., Eds.; Springer: Dordrecht, 2014. DOI: 10.1007/978-94-007-7890-0_4.
  • Nagajyothi, P. C.; Prabhakar, S. V.; Devarayapalli, K. C.; Yoo, K.; Jaesool, S.; Sreekanth, T. V. M. Green Synthesis: Photocatalytic Degradation of Textile Dyes Using Metal and Metal Oxide Nanoparticles-Latest Trends and Advancements. Crit. Rev. Environ. Sci. Technol. 2020, 50, 2617–2723. DOI: 10.1080/10643389.2019.1705103.
  • Lee, K.-J.; Park, S.-H.; Govarthanan, M.; Hwang, P.-H.; Seo, Y.-S.; Cho, M.; Lee, W.-H.; Lee, J.-Y.; Kamala-Kannan, S.; Oh, B.-T. Synthesis of Silver Nanoparticles Using Cow Milk and Their Antifungal Activity against Phytopathogens. Mater. Lett. 2013, 105, 128–131. DOI: 10.1016/j.matlet.2013.04.076.
  • Aravinthan, A.; Govarthanan, M.; Selvam, K.; Praburaman, L.; Selvankumar, T.; Balamurugan, R.; Kamala-Kannan, S.; Jong-Hoon, K. Sunroot Mediated Synthesis and Characterization of Silver Nanoparticles and Evaluation of Its Antibacterial and Rat Splenocyte Cytotoxic Effects. Int. J. Nanomed. 2015, 10, 1977–1983. DOI: 10.2147/IJN.S79106.
  • Govarthanan, M.; Selvankumar, T.; Manoharan, K.; Rathika, R.; Shanthi, K.; Lee, K.-J.; Cho, M.; Kamala-Kannan, S.; Oh, B.-T. Biosynthesis and Characterization of Silver Nanoparticles Using Panchakavya, an Indian Traditional Farming Formulating Agent. Int. J. Nanomed. 2014, 9, 1593–1599. DOI: 10.2147/IJN.S58932.
  • Govarthanan, M.; Young-Seok, S.; Kui-Jae, L.; Ik-Boo, J.; Ho-Jong, J.; Jae, S. K.; Cho, M.; Kamala-Kannan, S.; Byung-Taek, O. Low-Cost and Eco-Friendly Synthesis of Silver Nanoparticles Using Coconut (Cocos nucifera) Oil Cake Extract and Its Antibacterial Activity. Artif. Cells. Nanomed. Biotechnol. 2016, 44, 1878–1882. DOI: 10.3109/21691401.2015.1111230.
  • Luminita, D.; Moldovan, B. Green Synthesis of Biogenic Silver Nanoparticles for Efficient Catalytic Removal of Harmful Organic Dyes. Nanomaterials 2020, 10, 202. DOI: 10.3390/nano10020202.
  • Joseph, S.; Mathew, B. Microwave Assisted Green Synthesis of Silver Nanoparticles in the Study on Catalytic Activity in the Degradation of Dyes. J. Mol. Liq. 2015, 204, 184–191. DOI: 10.1016/j.molliq.2015.01.027.
  • Jyoti, K.; Singh, A. Green Synthesis of Nanostructured Silver Particles and Their Catalytic Application in Dye Degradation. J. Gen. Eng. Biotechnol. 2016, 14, 311–317. DOI: 10.1016/j.jgeb.2016.09.005.
  • Edison, T. N. J. I.; Atchudan, R.; Sethuraman, M. G.; Lee, Y. Reductive-Degradation of Carcinogenic Azo Dyes Using Anacardium occidentale testa Derived Silver Nanoparticles. J. Photochem. Photobiol. B. 2016, 162, 604–610. DOI: 10.1016/j.jphotobiol.2016.07.040.
  • Hojat, V.; Sirous, A.; Mohammadi, P. Green Synthesis of the Silver Nanoparticles Mediated by Thymbra spicata Extract and Its Application as a Heterogeneous and Recyclable Nanocatalyst for Catalytic Reduction of a Variety of Dyes in Water. J. Clean. Prod. 2018, 170, 1536–1543. DOI: 10.1016/j.jclepro.2017.09.265.
  • Edison, T. J.; Sethuraman, M. G. Biogenic Robust Synthesis of Silver Nanoparticles Using Punica granatum Peel and Its Application as a Green Catalyst for the Reduction of an Anthropogenic Pollutant 4-Nitrophenol. Spectrochim. Acta A. Mol. Biomol. Spectrosc. 2013, 104, 262–264. DOI: 10.1016/j.saa.2012.11.084.
  • Geeta, A.; Nikita, S.; Ahmed, J.; Gupta, N.; Kumar, A.; Chandra, R.; Nimesh, S. Degradation of Anthropogenic Pollutant and Organic Dyes by Biosynthesized Silver Nano-Catalyst from Cicer arietinum Leaves. J. Photochem. Photobiol. B. 2017, 174, 90–96. DOI: 10.1016/j.jphotobiol.2017.07.019.
  • Geeta, A.; Kumari, R. M.; Gupta, N.; Kumar, A.; Chandra, R.; Nimesh, S. Green Synthesis of Silver Nanoparticles Using Prosopis juliflora Bark Extract: Reaction Optimization, Antimicrobial and Catalytic Activities. Artif. Cells. Nanomed. Biotechnol. 2018, 46, 985–993. DOI: 10.1080/21691401.2017.1354302.
  • Taylor, S. C. Cosmetic Problems in Skin of Color. Skin Pharmacol. Appl. Skin Physiol. 1999, 12, 139–143. DOI: 10.1159/000029868.
  • Thanigaimalai, P.; Manickam, M.; Namasivayam, V. Skin Whitening Agents: Medicinal Chemistry Perspective of Tyrosinase Inhibitors. J. Enzyme Inhib. Med. Chem. 2017, 32, 403–425. DOI: 10.1080/14756366.2016.1256882.
  • Sonmez, F.; Sevmezler, S.; Atahan, A.; Ceylan, M.; Demir, D.; Gencer, N.; Arslan, O.; Kucukislamoglu, M. Evaluation of New Chalcone Derivatives as Polyphenol Oxidase Inhibitors. Bioorg. Med. Chem. Lett. 2011, 21, 7479–7482. DOI: 10.1016/j.bmcl.2011.09.130.
  • Basavegowda, N.; Idhayadhulla, A.; Lee, Y. R. Tyrosinase Inhibitory Activity of Silver Nanoparticles Treated with Hovenia dulcis Fruit Extract: An in Vitro Study. Mater. Lett. 2014, 129, 28–30. DOI: 10.1016/j.matlet.2014.05.008.
  • Morah, F. N. I.; Okoi, W. W. Euphorbia sanguinea Stem Sap as Antifungal Agent against Onychomycosis. Int. J. Adv. Sci. Res. 2016, 1, 8–9.
  • Ekennia, A. C.; Udeagwu, D. N.; Nwaji, N. N.; Olowu, O. J.; Nwanji, O. L.; Oje, O. O.; Emma-Uba, C. O.; Mgbii, S. I. Green Synthesis of Biogenic Zinc Oxide Nanoflower as Dual Agent for Photodegradation of an Organic Dye and Tyrosinase Inhibitor. J. Inorg. Organomet. Polym. Mater. 31, 886-897, 2021. DOI: 10.1007/s10904-020-01729-w.
  • Abbas, Q.; Saleem, M.; Phull, A. R.; Rafiq, M.; Hassan, M.; Lee, K.; Seo, S. Green Synthesis of Silver Nanoparticles Using Bidens frondosa Extract and Their Tyrosinase Activity. Iran. J. Pharm. Res. 2017, 16, 763–770.
  • Paul, B.; Bhuyan, B.; Purkayastha, D. D.; Dhar, S. S. Photocatalytic and Antibacterial Activities of Gold and Silver Nanoparticles Synthesized Using Biomass of Parkia roxburghii Leaf. J. Photochem. Photobiol. B. 2016, 154, 1–7. DOI: 10.1016/j.jphotobiol.2015.11.004.
  • Saghaie, L.; Pourfarzam, M.; Fassihi, A.; Sartippour, B. Synthesis and Tyrosinase Inhibitory Properties of Some Novel Derivatives of Kojic Acid. Res. Pharma. Sci. 2013, 8, 233–242.
  • Xu, F.; Yuan, Y.; Wu, D.; Zhao, M.; Gao, Z.; Jiang, K. Synthesis of ofZnO/Ag/Graphene Composite and Its Enhanced Photocatalytic Efficiency. Mater. Res. Bull. 2013, 48, 2066–2070. DOI: 10.1016/j.materresbull.2013.02.034.
  • Pirtarighat, S.; Ghannadnia, M.; Baghshahi, S. Biosynthesis of Silver Nanoparticles Using Ocimum basilicum Cultured under Controlled Conditions for Bactericidal Application. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 98, 250–255. DOI: 10.1016/j.msec.2018.12.090.
  • Erdogan, O.; Abbak, M.; Demirbolat, G. M.; Birtekocak, F.; Aksel, M.; Pasa, S.; Cevik, O. Green Synthesis of Silver Nanoparticles via Cynara scolymus Leaf Extracts: The Characterization, Anticancer Potential with Photodynamic Therapy in MCF7 Cells. PLoS One. 2019, 14, e0216496. DOI: 10.1371/journal.pone.0216496.
  • Ahmed, S.; Saifullah, M.; Ahmad, B. L.; Swami, S. I. Green Synthesis of Silver Nanoparticles Using Azadirachta indica Aqueous Leaf Extract. J. Radiat. Res. Appl. Sci. 2016, 9, 1–7.
  • Ravichandrana, V.; Vasanthib, S.; Shalinic, S.; Adnan, S.; Shahd, A.; Tripathyd, M.; Paliwala, N. Green Synthesis, Characterization, Antibacterial, Antioxidant and Photocatalytic Activity of Parkia speciosa Leaves Extract Mediated Silver Nanoparticles. Results Phys. 2019, 15, 102565. DOI: 10.1016/j.rinp.2019.102565.
  • Ara, M. H. M.; Dehghani, Z.; Sahraei, R.; Daneshfar, A.; Javadi, Z.; Divsar, F. Diffraction Patterns and Nonlinear Optical Properties of Gold Nanoparticles. J. Quant. Spectrosc. Radiat. Transf. 2012, 113, 366–372. DOI: 10.1016/j.jqsrt.2011.12.006.
  • Jenkins, R.; Synder, R. L. Introduction to X-Ray Diffractometry; Wiley & Sons: New York, 1996.
  • Narasaiah, P.; Mandal, B. K.; Sarada, N. C. Biosynthesis of Copper Oxide Nanoparticles from Drypetes sepiaria Leaf Extract and Their Catalytic Activity to Dye Degradation. IOP Conf. Ser. Mater. Sci. Eng. 2017, 263, 022012. DOI: 10.1088/1757-899X/263/2/022012.
  • Chiu, Y.; Chang, T. M.; Chen, C.; Sone, M.; Hsu, Y. Mechanistic Insights into Photodegradation of Organic Dyes Using Heterostructure Photocatalysts. Catalysts 2019, 9, 430. DOI: 10.3390/catal9050430.
  • Raajshree, K. R.; Durairaj, B. Evaluation of the Antityrosinase and Antioxidant Potential of Zinc Oxide Nanoparticles Synthesized from the Brown Seaweed-Turbinaria conoides. Int. J. App. Pharm. 2017, 9, 116. DOI: 10.22159/ijap.2017v9i5.20847.
  • Yung-Sheng, L.; Chen, H.; Huang, J.; Lee, P.; Tsai, C.; Hsu, T.; Huang, W. Kinetics of Tyrosinase Inhibitory Activity Using Vitis vinifera Leaf Extracts. Biomed. Res. Int. 2017, 2017, 5232680. DOI: 10.1155/2017/5232680.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.