139
Views
1
CrossRef citations to date
0
Altmetric
Articles

Identifying the role of process conditions for synthesis of stable gold nanoparticles and insight detail of reaction mechanism

ORCID Icon, , , ORCID Icon, , & show all
Pages 519-532 | Received 13 Aug 2020, Accepted 01 Dec 2020, Published online: 15 Mar 2021

References

  • Lee, K. X.; Shameli, K.; Yew, Y. P.; Teow, S.-Y.; Jahangirian, H.; Rafiee-Moghaddam, R.; Webster, T. J. Recent Developments in the Facile Bio-Synthesis of Gold Nanoparticles (AuNPs) and Their Biomedical Applications. IJN 2020, 15, 275–300. DOI: 10.2147/IJN.S233789.
  • Vijayaraghavan, K.; Ashokkumar, T. Plant-Mediated Biosynthesis of Metallic Nanoparticles: A Review of Literature, Factors Affecting Synthesis, Characterization Techniques and Applications. J. Environ. Chem. Eng. 2017, 5, 4866–4883. DOI: 10.1016/j.jece.2017.09.026.
  • Irfan, M.; Ahmad, T.; Moniruzzaman, M.; Bhattacharjee, S.; Abdullah, B. Size and Stability Modulation of Ionic Liquid Functionalized Gold Nanoparticles Synthesized Using Elaeis Guineensis (Oil Palm) Kernel Extract. Arabian J. Chem. 2020, 13, 75–85. DOI: 10.1016/j.arabjc.2017.02.001.
  • Ahmad, T.; Irfan, M.; Bhattacharjee, S. Parametric Study on Gold Nanoparticle Synthesis Using Aqueous Elaise Guineensis (Oil Palm) Leaf Extract: Effect of Precursor Concentration. Procedia Eng. 2016, 148, 1396–1401. DOI: 10.1016/j.proeng.2016.06.558.
  • Irfan, M.; Moniruzzaman, M.; Ahmad, T.; Mandal, P. C.; Bhattacharjee, S.; Abdullah, B. Ionic Liquid Based Extraction of Flavonoids from Elaeis Guineensis Leaves and Their Applications for Gold Nanoparticles Synthesis. J. Mol. Liq. 2017, 241, 270–278. DOI: 10.1016/j.molliq.2017.05.151.
  • Chaudhuri, R. G.; Paria, S. Growth Kinetics of Sulfur Nanoparticles in Aqueous Surfactant Solutions. J. Colloid Interface Sci. 2011, 354, 563–569. DOI: 10.1016/j.jcis.2010.11.039.
  • Mishra, A.; Kumari, M.; Pandey, S.; Chaudhry, V.; Gupta, K.; Nautiyal, C. Biocatalytic and Antimicrobial Activities of Gold Nanoparticles Synthesized by Trichoderma sp. Bioresource Technol. 2014, 166, 235–242. DOI: 10.1016/j.biortech.2014.04.085.
  • Aromal, S. A.; Philip, D. Green Synthesis of Gold Nanoparticles Using Trigonella Foenum-Graecum and Its Size-Dependent Catalytic Activity. Spectrochim. Act A Mol. Biomol. Spectrosc. 2012, 97, 1–5. DOI: 10.1016/j.saa.2012.05.083.
  • Muthuvel, A.; Adavallan, K.; Balamurugan, K.; Krishnakumar, N. Biosynthesis of Gold Nanoparticles Using Solanum Nigrum Leaf Extract and Screening Their Free Radical Scavenging and Antibacterial Properties. Biomed. Prev. Nutr. 2014, 4, 325–332. DOI: 10.1016/j.bionut.2014.03.004.
  • Aromal, S. A.; Babu, K. D.; Philip, D. Characterization and Catalytic Activity of Gold Nanoparticles Synthesized Using Ayurvedic Arishtams. Spectrochim. Act A: Mol. Biomol. Spectrosc. 2012, 96, 1025–1030. DOI: 10.1016/j.saa.2012.08.010.
  • Joseph, S.; Mathew, B. Microwave-Assisted Green Synthesis of Silver Nanoparticles and the Study on Catalytic Activity in the Degradation of Dyes. J. Mol. Liq. 2015, 204, 184–191. DOI: 10.1016/j.molliq.2015.01.027.
  • Basavegowda, N.; Idhayadhulla, A.; Lee, Y. R. Phyto-Synthesis of Gold Nanoparticles Using Fruit Extract of Hovenia Dulcis and Their Biological Activities. Ind. Crops Prod. 2014, 52, 745–751. DOI: 10.1016/j.indcrop.2013.12.006.
  • Arya, S. S.; Sharma, M. M.; Das, R. K.; Rookes, J.; Cahill, D.; Lenka, S. K. Vanillin Mediated Green Synthesis and Application of Gold Nanoparticles for Reversal of Antimicrobial Resistance in Pseudomonas aeruginosa Clinical Isolates. Heliyon 2019, 5, e02021. DOI: 10.1016/j.heliyon.2019.e02021.
  • Dubey, S. P.; Lahtinen, M.; Sillanpää, M. Green Synthesis and Characterizations of Silver and Gold Nanoparticles Using Leaf Extract of Rosa Rugosa. Colloids Surf. A Physicochem. Eng. Asp. 2010, 364, 34–41. DOI: 10.1016/j.colsurfa.2010.04.023.
  • Ribeiro, C.; Lee, E. J.; Longo, E.; Leite, E. R. A Kinetic Model to Describe Nanocrystal Growth by the Oriented Attachment Mechanism. Chemphyschem 2005, 6, 690–696. DOI: 10.1002/cphc.200400505.
  • Lewis, D. J.; Day, T. M.; MacPherson, J. V.; Pikramenou, Z. Luminescent Nanobeads: attachment of Surface Reactive Eu (III) Complexes to Gold Nanoparticles. Chem. Commun. 2006, 13, 1433–1435. DOI: 10.1039/b518091k.
  • Irfan, M.; Ahmad, T.; Moniruzzaman, M. M.; Abdullah, B.; Bhattacharjee, S. Ionic Liquid Mediated Biosynthesis of Gold Nanoparticles Using Elaeis Guineensis (Oil Palm) Leaves Extract. Procedia Eng. 2016, 148, 568–572. DOI: 10.1016/j.proeng.2016.06.512.
  • Das, J.; Velusamy, P. Catalytic Reduction of Methylene Blue Using Biogenic Gold Nanoparticles from Sesbania grandiflora L. J. Taiwan Inst. Chem. Eng. 2014, 45, 2280–2285. DOI: 10.1016/j.jtice.2014.04.005.
  • Emmanuel, R.; Karuppiah, C.; Chen, S.-M.; Palanisamy, S.; Padmavathy, S.; Prakash, P. Green Synthesis of Gold Nanoparticles for Trace Level Detection of a Hazardous Pollutant (Nitrobenzene) Causing Methemoglobinaemia. J. Hazard Mater. 2014, 279, 117–124. DOI: 10.1016/j.jhazmat.2014.06.066.
  • Elia, P.; Zach, R.; Hazan, S.; Kolusheva, S.; Porat, Z. e.; Zeiri, Y. Green Synthesis of Gold Nanoparticles Using Plant Extracts as Reducing Agents. Int. J. Nanomed. 2014, 9, 4007–4021. DOI: 10.2147/IJN.S57343.
  • Rajan, A.; MeenaKumari, M.; Philip, D. Shape Tailored Green Synthesis and Catalytic Properties of Gold Nanocrystals. Spectrochim Acta A Mol Biomol Spectrosc ... 2014, 118, 793–799. DOI: 10.1016/j.saa.2013.09.086.
  • Sharma, B.; Purkayastha, D. D.; Hazra, S.; Gogoi, L.; Bhattacharjee, C. R.; Ghosh, N. N.; Rout, J. Biosynthesis of Gold Nanoparticles Using a Freshwater Green Alga, Prasiola Crispa. Mater. Lett. 2014, 116, 94–97. DOI: 10.1016/j.matlet.2013.10.107.
  • Khalil, M. M.; Ismail, E. H.; El-Magdoub, F. Biosynthesis of Au Nanoparticles Using Olive Leaf Extract: 1st Nano Updates. Arabian J. Chem 2012, 5, 431–437. DOI: 10.1016/j.arabjc.2010.11.011.
  • Bhuvanasree, S.; Harini, D.; Rajaram, A.; Rajaram, R. Rapid Synthesis of Gold Nanoparticles with Cissus Quadrangularis Extract Using Microwave Irradiation. Spectrochim. Act. A: Mol. Biomol. Spectrosc. 2013, 106, 190–196. DOI: 10.1016/j.saa.2012.12.076.
  • Cai, F.; Li, J.; Sun, J.; Ji, Y. Biosynthesis of Gold Nanoparticles by Biosorption Using Magnetospirillum gryphiswaldense MSR-1. Chem. Eng. J. 2011, 175, 70–75. DOI: 10.1016/j.cej.2011.09.041.
  • Aromal, S. A.; Vidhu, V.; Philip, D. Green Synthesis of Well-Dispersed Gold Nanoparticles Using Macrotyloma Uniflorum. Spectrochim. Act. A: Mol. Biomol. Spectrosc. 2012, 85, 99–104. DOI: 10.1016/j.saa.2011.09.035.
  • Irfan, M.; Moniruzzaman, M.; Ahmad, T.; Mandal, P. C.; Abdullah, B.; Bhattacharjee, S. Growth Kinetic Study of Ionic Liquid Mediated Synthesis of Gold Nanoparticles Using Elaeis Guineensis (Oil Palm) Kernels Extract under Microwave Irradiation. Arabian J. Chem 2020, 13, 620–631. DOI: 10.1016/j.arabjc.2017.07.005.
  • Irfan, M.; Moniruzzaman, M.; Ahmad, T.; Osman, O. Y.; Mandal, P. C.; Bhattacharjee, S.; Hussain, M. Stability, Interparticle Interactions and Catalytic Performance of Gold Nanoparticles Synthesized through Ionic Liquid Mediated Oil Palm Leaves Extract. J. Environ. Chem. Eng. 2018, 6, 5024–5031. DOI: 10.1016/j.jece.2018.07.031.
  • Fatemi, M.; Shomali, T.; Nazifi, S.; Fazeli, M. Optimization, Characterization and in Vivo Hepatoprotective Effects of Gold Nanoparticles Biosynthesized by Eryngium Bungei Boiss. Hydro‑Alcoholic Extract. J. Inorg. Organomet. Polym. 2020, 30, 4170–4179. DOI: 10.1007/s10904-020-01569-8.
  • Parial, D.; Pal, R. Green Synthesis of Gold Nanoparticles Using Cyanobacteria and Their Characterization. IJAR. 2014, 4, 69–72. DOI: 10.15373/2249555X/JAN2014/22.
  • Nadaf, N. Y.; Kanase, S. S. Biosynthesis of Gold Nanoparticles by Bacillus marisflavi and Its Potential in Catalytic Dye Degradation. Arabian J. Chem. 2019, 12, 4806–4814. DOI: 10.1016/j.arabjc.2016.09.020.
  • Sujitha, M. V.; Kannan, S. Green Synthesis of Gold Nanoparticles Using Citrus Fruits (Citrus Limon, Citrus Reticulata and Citrus Sinensis) Aqueous Extract and Its Characterization. Spectrochim. Act. A: Mol. Biomol. Spectrosc. 2013, 102, 15–23. DOI: 10.1016/j.saa.2012.09.042.
  • Vanaamudan, A.; Soni, H.; Sudhakar, P. P. Palm Shell Extract Capped Silver Nanoparticles—as Efficient Catalysts for Degradation of Dyes and as SERS Substrates. J. Mol. Liq. 2016, 215, 787–794. DOI: 10.1016/j.molliq.2016.01.027.
  • Ahmad, T.; Bustam, M. A.; Irfan, M.; Moniruzzaman, M.; Asghar, H. M. A.; Bhattacharjee, S. Mechanistic Investigation of Phytochemicals Involved in Green Synthesis of Gold Nanoparticles Using Aqueous Elaeis Guineensis Leaves Extract: Role of Phenolic Compounds and Flavonoids. Biotechnol. Appl. Biochem. 2019, 66, 698–708. DOI: 10.1002/bab.1787.
  • Seifipour, R.; Nozari, M.; Pishkar, L. Green Synthesis of Silver Nanoparticles Using Tragopogon Collinus Leaf Extract and Study of Their Antibacterial Effects. J. Inorg. Organomet. Polym. Mater. 2020, 30, 2926–2936.
  • Ahmad, T.; Bustam, M. A.; Irfan, M.; Moniruzzaman, M.; Asghar, H. M. A.; Bhattacharjee, S. Green Synthesis of Stabilized Spherical Shaped Gold Nanoparticles Using Novel Aqueous Elaeis guineensis (Oil Palm) Leaves Extract. J. Mol. Struct. 2018, 1159, 167–173. DOI: 10.1016/j.molstruc.2017.11.095.
  • Bagherzade, G.; Tavakoli, M. M.; Namaei, M. H. Green Synthesis of Silver Nanoparticles Using Aqueous Extract of Saffron (Crocus Sativus L.) Wastages and Its Antibacterial Activity against Six Bacteria. Asian Pac. J. Trop. Biomed. 2017, 7, 227–233. DOI: 10.1016/j.apjtb.2016.12.014.
  • Tsouko, E.; Alexandri, M.; Fernandes, K. V.; Freire, D. M. G.; Mallouchos, A.; Koutinas, A. A. Extraction of Phenolic Compounds from Palm Oil Processing Residues and Their Application as Antioxidants. Food Technol. Biotechnol. 2019, 57, 29–38. DOI: 10.17113/ftb.57.01.19.5784.
  • Asadullah, M.; Ab Rasid, N. S.; Kadir, S. A. S. A.; Azdarpour, A. Production and Detailed Characterization of Bio-Oil from Fast Pyrolysis of Palm Kernel Shell. Biomass Bioenergy 2013, 59, 316–324. DOI: 10.1016/j.biombioe.2013.08.037.
  • Anand, K.; Gengan, R.; Phulukdaree, A.; Chuturgoon, A. Agroforestry Waste Moringa Oleifera Petals Mediated Green Synthesis of Gold Nanoparticles and Their anti-Cancer and Catalytic Activity. J. Ind. Eng. Chem. 2015, 21, 1105–1111. DOI: 10.1016/j.jiec.2014.05.021.
  • Chairam, S.; Konkamdee, W.; Parakhun, R. Starch-Supported Gold Nanoparticles and Their Use in 4-Nitrophenol Reduction. J. Saudi Chem. Soc. 2017, 21, 656–663. DOI: 10.1016/j.jscs.2015.11.001.
  • Kannan, P.; Los, M.; Los, J. M.; Niedziolka-Jonsson, J. T7 Bacteriophage Induced Changes of Gold Nanoparticle Morphology: Biopolymer Capped Gold Nanoparticles as Versatile Probes for Sensitive Plasmonic Biosensors. Analyst 2014, 139, 3563–3571. DOI: 10.1039/c3an02272b.
  • Zayadi, R. A.; Bakar, F. A. Comparative Study on Stability, Antioxidant and Catalytic Activities of Bio-Stabilized Colloidal Gold Nanoparticles Using Microalgae and Cyanobacteria. J. Environ. Chem. Eng. 2020, 8, 103843. DOI: 10.1016/j.jece.2020.103843.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.