247
Views
0
CrossRef citations to date
0
Altmetric
Articles

A nickel complex of 2,2-dicyanoethylene-1,1-dithiolate, a catalyst for electrochemical and photochemical driven hydrogen evolution

, , , &
Pages 533-541 | Received 18 Aug 2020, Accepted 01 Dec 2020, Published online: 10 Mar 2021

References

  • Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q. X.; Santori, E. A.; Lewis, N. S. Solar Water Splitting Cells. Chem. Rev. 2010, 110, 6446–6473.
  • Esswein, A. J.; Nocera, D. G. Hydrogen Production by Molecular Photocatalysis. Chem. Rev. 2007, 107, 4022–4047. DOI: 10.1021/cr050193e.
  • Alstrum-Acevedo, J. H.; Brennaman, M. K.; Meyer, T. J. Chemical Approaches to Artificial Photosynthesis. 2. Inorg. Chem. 2005, 44, 6802–6827. DOI: 10.1021/ic050904r.
  • Gong, S.; Jiang, Z.; Shi, P.; Fan, J.; Xu, Q.; Min, Y. Noble-Metal-Free Heterostructure for Effiffifficient Hydrogen Evolution in Visible Region: Molybdenum Nitride/Ultrathin Graphitic Carbon Nitride. Appl. Cata. B: Environ. 2018, 238, 318–327. DOI: 10.1016/j.apcatb.2018.07.040.
  • Fontecilla-Camps, J. C.; Volbeda, A.; Cavazza, C.; Nicolet, Y. Structure/Function Relationships of [NiFe]- and [FeFe]-Hydrogenases. Chem. Rev. 2007, 107, 4273–4303. DOI: 10.1021/cr050195z.
  • Vignais, P. M.; Billoud, B. Occurrence, Classification, and Biological Function of Hydrogenases: An overview. Chem. Rev. 2007, 107, 4206–4272. DOI: 10.1021/cr050196r.
  • Gan, L.; Groy, T. L.; Tarakeshwar, P.; Mazinani, S. K. S.; Shearer, J.; Mujica, V.; Jones, A. K. A Nickel Phosphine Complex as a Fast and Efficient Hydrogen Production Catalyst. J. Am. Chem. Soc. 2015, 137, 1109–1115. DOI: 10.1021/ja509779q.
  • Das, A.; Han, Z. J.; Brennessel, W. W.; Holland, P. L.; Eisenberg, R. Nickel Complexes for Robust Light-Driven and Electrocatalytic Hydrogen Production from Water. ACS Catal. 2015, 5, 1397–1406. DOI: 10.1021/acscatal.5b00045.
  • Deponti, E.; Luisa, A.; Natali, M.; Iengo, E.; Scandola, F. Photoinduced Hydrogen Evolution by a Pentapyridine Cobalt Complex: elucidating Some Mechanistic Aspects. Dalton Trans. 2014, 43, 16345–16353. DOI: 10.1039/c4dt02269f.
  • Peng, Q.-X.; Xue, D.; Yang, L.-F.; Zhan, S.-Z. A Coordinatively Saturated Cobalt Complex as a New Kind Catalyst for Efficient Electro- and Photo-Catalytic Hydrogen Production in Purely Aqueous Media. Int. J. Hydrogen Energy 2017, 42, 16428–16435. DOI: 10.1016/j.ijhydene.2017.05.198.
  • Gärtner, F.; Boddien, A.; Barsch, E.; Fumino, K.; Losse, S.; Junge, H.; Hollmann, D.; Brückner, A.; Ludwig, R.; Beller, M. Photocatalytic Hydrogen Generation from Water with Iron Carbonyl Phosphine Complexes: Improved Water Reduction Catalysts and Mechanistic Insights. Chemistry 2011, 17, 6425–6436. DOI: 10.1002/chem.201003564.
  • Probst, B.; Kolano, C.; Hamm, P.; Alberto, R. An Efficient Homogeneous Intermolecular Rhenium-Based Photocatalytic System for the Production of H2. Inorg. Chem. 2009, 48, 1836–1843. DOI: 10.1021/ic8013255.
  • Eckenhoff, W. T.; Eisenberg, R. Molecular Systems for Light Driven Hydrogen Production. Dalton Trans. 2012, 41, 13004–13021. DOI: 10.1039/c2dt30823a.
  • Eckenhoff, W. T.; Brennessel, W. W.; Eisenberg, R. Light-Driven Hydrogen Production from Aqueous Protons Using Molybdenum Catalysts. Inorg. Chem. 2014, 53, 9860–9869. DOI: 10.1021/ic501440a.
  • Wu, K.; Du, Y.; Tang, H.; Chen, Z.; Lian, T. Efficient Extraction of Trapped Holes from Colloidal CdS Nanorods. J. Am. Chem. Soc. 2015, 137, 10224–10230. DOI: 10.1021/jacs.5b04564.
  • Wilker, M. B.; Shinopoulos, K. E.; Brown, K. A.; Mulder, D. W.; King, P. W.; Dukovic, G. Electron Transfer Kinetics in CdS Nanorod-[FeFe]-Hydrogenase Complexes and Implications for Photochemical H2 Generation. J. Am. Chem. Soc. 2014, 136, 4316–4324. DOI: 10.1021/ja413001p.
  • Marschall, R. Semiconductor Composites: Strategies for Enhancing Charge Carrier Separation to Improve Photocatalytic Activity. Adv. Funct. Mater. 2014, 24, 2421–2440. DOI: 10.1002/adfm.201303214.
  • Wen, F. Y.; Li, C. Hybrid Artificial Photosynthetic Systems Comprising Semiconductors as Light Harvesters and Biomimetic Complexes as Molecular Cocatalysts. Acc. Chem. Res. 2013, 46, 2355–2364. DOI: 10.1021/ar300224u.
  • Zou, X. X.; Zhang, Y. Noble Metal-Free Hydrogen Evolution Catalysts for Water Splitting. Chem. Soc. Rev. 2015, 44, 5148–5180. DOI: 10.1039/c4cs00448e.
  • Feng, C.; Li, X.; Hou, Y.; Ni, C. Bis[1-Benzyl-4-(Dimethylamino)-Pyridinium] Bis(2,2-Dicyanoethylene-1,1-Dithiolato-κ2S,S’)Nickelate(II. ). Acta Crystallogr. E Struct. Rep. Online 2007, 63, m1762–m1762. DOI: 10.1107/S1600536807025251.
  • Jang, J. S.; Joshi, U. A.; Lee, J. S. Solvothermal Synthesis of CdS Nanowires for Photocatalytic Hydrogen and Electricity Production. J. Phys. Chem. C. 2007, 111, 13280–13287. DOI: 10.1021/jp072683b.
  • Rountree, E. S.; Dempsey, J. L. Potential-Dependent Electrocatalytic Pathways: Controlling Reactivity with pKa for Mechanistic Investigation of a Nickel-Based Hydrogen Evolution Catalyst. J. Am. Chem. Soc. 2015, 137, 13371–13380. DOI: 10.1021/jacs.5b08297.
  • Han, Z.; Shen, L.; Brennessel, W. W.; Holland, P. L.; Eisenberg, R. Nickel Pyridinethiolate Complexes as Catalysts for the Light-Driven Production of Hydrogen from Aqueous Solutions in Noble-Metal-Free Systems. J. Am. Chem. Soc. 2013, 135, 14659–14669. DOI: 10.1021/ja405257s.
  • Zhang, Y.-X.; Tang, L.-Z.; Deng, Y.-F.; Zhan, S.-Z. Synthesis and Electrocatalytic Function for Hydrogen Generation of Cobalt and Nickel Complexes Supported by Phenylenediamine Ligand. Inorg. Chem. Commun 2016, 72, 100–104. DOI: 10.1016/j.inoche.2016.08.022.
  • Lin, C.-N.; Xue, D.; Zhou, Y.-H.; Zhan, S.-Z.; Ni, C.-L. The Effect of Oxidation State of Metal on Hydrogen Production Electro-Catalyzed by Nickel Complexes Supported by Maleonitriledithiolate Ligand. J. Electroanal. Chem. 2017, 785, 58–64. DOI: 10.1016/j.jelechem.2016.12.011.
  • Felton, G. A. N.; Glass, R. S.; Lichtenberger, D. L.; Evans, D. H. Iron-Only Hydrogenase Mimics. Thermodynamic Aspects of the Use of Electrochemistry to Evaluate Catalytic Efficiency for Hydrogen Generation. Inorg. Chem. 2006, 45, 9181–9184. DOI: 10.1021/ic060984e.
  • Fang, T.; Fu, L.-Z.; Zhou, L.-L.; Zhan, S.-Z.; Chen, S. Electrochemical-Driven Water Reduction Catalyzed by a Water Soluble Cobalt(III) Complex with Schiff Base Ligand. Electrochim. Acta 2015, 178, 368–373. DOI: 10.1016/j.electacta.2015.07.180.
  • Nicholson, R. S.; Shain, I. Theory of Stationary Electrode Polarography. Single Scan and Cyclic Methods Applied to Reversible, Irreversible, and Kinetic Systems. Anal. Chem. 1964, 36, 706–723. DOI: 10.1021/ac60210a007.
  • Karunadasa, H. I.; Chang, C. J.; Long, J. R. A Molecular Molybdenum-Oxo Catalyst for Generating Hydrogen from Water. Nature 2010, 464, 1329–1333. DOI: 10.1038/nature08969.
  • Luo, G.-G.; Wang, Y.-H.; Wang, J.-H.; Wu, J.-H.; Wu, R.-B. A Square-Planar Nickel Dithiolate Complex as an Efficient Molecular Catalyst for the Electro- and Photoreduction of Protons. Chem. Commun. (Camb) 2017, 53, 7007–7010. DOI: 10.1039/c7cc01942d.
  • Xie, A.; Zhu, J.; Luo, G.-G. Efficient Electrocatalytic and Photocatalytic Hydrogen Evolution Using a Linear Trimeric Thiolato Complex of Nickel. Int. J. Hydro. Energy 2018, 43, 2772–2780. DOI: 10.1016/j.ijhydene.2017.12.120.
  • Lee, W. T.; Munoz, S. B.; III, Dickie, D. A.; Smith, J. M. Ligand Modification Transforms a Catalase Mimic into a Water Oxidation Catalyst. Angew. Chem. Int. Ed. Engl. 2014, 53, 9856–9859. DOI: 10.1002/anie.201402407.
  • Singh, W. M.; Baine, T.; Kudo, S.; Tian, S.; Ma, X. A. N.; Zhou, H.; DeYonker, N. J.; Pham, T. C.; Bollinger, J. C.; Baker, D. L.; et al. Electrocatalytic and Photocatalytic Hydrogen Production in Aqueous Solution by a Molecular Cobalt Complex. Angew. Chem. Int. Ed. Engl. 2012, 51, 5941–5944. DOI: 10.1002/anie.201200082.
  • Martin, D. J.; Qiu, K. P.; Shevlin, S. A.; Handoko, A. D.; Chen, X. W.; Guo, Z. X.; Tang, J. W. Highly Efficient Photocatalytic H2 Evolution from Water Using Visible Light and Structure-Controlled Graphitic Carbon Nitride. Angew. Chem. Int. Ed. 2014, 53, 9240–9245. DOI: 10.1002/anie.201403375.
  • Cao, S.; Wang, C.-J.; Lv, X.-J.; Chen, Y.; Fu, W.-F. A Highly Efficient Photocatalytic H2 Evolution System Using Colloidal CdS Nanorods and Nickel Nanoparticles in Water under Visible Light Irradiation. Appl. Catal. B. Environ. 2015, 162, 381–391. DOI: 10.1016/j.apcatb.2014.07.014.
  • Lei, J.-M.; Luo, S.-P.; Zhan, S.-Z.; Wu, S.-P. A Nickel(II) Complex of S,S-Bis(2-Pyridylmethyl)-1,2-Thioethane, a Cocatalyst for Photochemical Driven Hydrogen Evolution from Water under Visible Light. Inorg. Chem. Commun. 2018, 95, 158–162. DOI: 10.1016/j.inoche.2018.07.030.
  • Chen, J. T.; Ding, J. B.; Guo, Y.; Kong, L. B.; Li, H. L. A Facile Route to Preparation of CdS Nanorods. Mater. Chem. Phys. 2003, 77, 734–737. DOI: 10.1016/S0254-0584(02)00136-0.
  • Hsu, S. H.; Hung, S. F.; Chien, S. H. CdS Sensitized Vertically Aligned Single Crystal TiO2 Nanorods on Transparent Conducting Glass with Improved Solar Cell Efficiency and Stability Using ZnS Passivation Layer. J. Power Sources 2013, 233, 236–243. DOI: 10.1016/j.jpowsour.2013.01.089.
  • Scalmani, G.; Frisch, M. J. Continuous Surface Charge Polarizable Continuum Models of Solvation. I. General Formalism. J. Chem. Phys. 2010, 132, 114110 DOI: 10.1063/1.3359469.
  • Han, C.; Ge, L.; Chen, C.; Li, Y.; Xiao, X.; Zhang, Y.; Guo, L. Novel Visible Light Induced Co3O4-g-C3N4 Heterojunction Photocatalysts for Efficient Degradation of Methyl Orange. Appl. Catal., B 2014, 147, 546–553. DOI: 10.1016/j.apcatb.2013.09.038.
  • Zhang, W.; Hong, J.; Zheng, J.; Huang, Z.; Zhou, J.; Xu, R. Nickel-thiolate Complex Catalyst Assembled in One Step in Water for Solar H2 Production. J. Am. Chem. Soc. 2011, 133, 20680–20683. DOI: 10.1021/ja208555h.
  • McLaughlin, M. P.; McCormick, T. M.; Eisenberg, R.; Holland, P. A Stable Molecular Nickel Catalyst for the Homogeneous Photogeneration of Hydrogen in Aqueous Solution. Chem. Commun. (Camb) 2011, 47, 7989–7991. DOI: 10.1039/c1cc12347e.
  • Yu, Y.; Ouyang, W.; Liao, Z.; Du, B.; Zhang, W. Construction of ZnO/ZnS/CdS/CuInS2 Core-shell Nanowire Arrays Via Ion Exchange: p-n Junction Photoanode with Enhanced Photoelectrochemical Activity Under Visible Light. ACS Appl Mater Interfaces 2014, 6, 8467–8474. DOI: 10.1021/am501336u.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.