350
Views
9
CrossRef citations to date
0
Altmetric
Articles

Electrochemical properties of sodium manganese oxide/nickel foam supercapacitor electrode material

Pages 548-555 | Received 21 Sep 2020, Accepted 01 Feb 2021, Published online: 22 Mar 2021

References

  • Li, P.; Ruan, C.; Xu, J.; Xie, Y. Supercapacitive Performance of CoMoO4 with Oxygen Vacancy Porous Nanosheet. Electrochim. Acta 2020, 330, 135334. DOI: 10.1016/j.electacta.2019.135334.
  • Ma, Y.; Zhuang, Z.; Ma, M.; Yang, Y.; Li, W.; Lin, J.; Dong, M.; Wu, S.; Ding, T.; Guo, Z. Solid Polyaniline Dendrites Consisting of High Aspect Ratio Branches Self-Assembled Using Sodium Lauryl Sulfonate as Soft Templates: Synthesis and Electrochemical Performance. Polymer 2019, 182, 121808. DOI: 10.1016/j.polymer.2019.121808.
  • Ma, Y.; Ma, M.; Yin, X.; Shao, Q.; Lu, N.; Feng, Y.; Lu, Y.; Wujcik, E. K.; Mai, X.; Wang, C.; Guo, Z.; et al. Tuning Polyaniline Nanostructures via End Group Substitutions and Their Morphology Dependent Electrochemical Performances. Polymer 2018, 156, 128–135. DOI: 10.1016/j.polymer.2018.09.051.
  • Li, X.; Zhao, W.; Yin, R.; Huang, X.; Qian, L. A Highly Porous Polyaniline-Graphene Composite Used for Electrochemical Supercapacitors. Eng. Sci. 2018, 3, 89–95.
  • Sayyed, S. G.; Mahadik, M. A.; Shaikh, A. V.; Jang, J. S.; Pathan, H. M. Nano-Metal Oxide Based Supercapacitor via Electrochemical Deposition. ES Energy Environ. 2019, 3, 25–44.
  • Wang, X.; Zeng, X.; Cao, D. Biomass-Derived Nitrogen-Doped Porous Carbons (NPC) and NPC/Polyaniline Composites as High Performance Supercapacitor Materials. Eng. Sci. 2018, 1, 55–63.
  • Yang, Z.; Tian, J.; Yin, Z.; Cui, C.; Qian, W.; Wei, F. Carbon Nanotube- and Graphene-Based Nanomaterials and Applications in High-Voltage Supercapacitor: A Review. Carbon 2019, 141, 467–480. DOI: 10.1016/j.carbon.2018.10.010.
  • Wang, B.; Ruan, T.; Chen, Y.; Jin, F.; Peng, L.; Zhou, Y.; Wang, D.; Dou, S. Graphene-Based Composites for Electrochemical Energy Storage. Energy Stor. Mater. 2020, 24, 22–51. DOI: 10.1016/j.ensm.2019.08.004.
  • Chinnasamy, S.; Ramasamy, J.; Rekha, G.; Shrestha, T.; Subramani, S. Indium Oxide/Carbon Nanotube/Reduced Graphene Oxide Ternary Nanocomposite with Enhanced Electrochemical Supercapacitance. Bull. Chem. Soc. Jpn. 2019, 92, 521–528.
  • Rao, C. N. R.; Pramoda, K. Borocarbonitrides, BxCyNz, 2D Nanocomposites with Novel Properties. BCSJ. 2019, 92, 441–468. DOI: 10.1246/bcsj.20180335.
  • Xie, Y. Electrochemical Performance of Transition Metal-Coordinated Polypyrrole: A Mini Review. Chem. Rec. 2019, 19, 2316–2370. DOI: 10.1002/tcr.201800192.
  • Xie, Y.; Yao, C. Electrochemical Performance of RuO2-TiO2 Nanotube Hybrid Electrode Material. Mater. Res. Express 2020, 6, 125550. DOI: 10.1088/2053-1591/ab69c9.
  • Xie, Y.; Wang, Y. Electronic Structure and Electrochemical Performance of CoS2/MoS2 Nanosheet Composite: Simulation Calculation and Experimental Investigation. Electrochim. Acta 2020, 364, 137224. DOI: 10.1016/j.electacta.2020.137224.
  • Wang, Y.; Xie, Y. Electroactive FeS2-Modified MoS2 Nanosheet for High-Performance Supercapacitor. J. Alloys Compd. 2020, 824, 153936. DOI: 10.1016/j.jallcom.2020.153936.
  • Xie, Y. Preparation and Electrochemical Properties of Flow-Through TiO2 Nanoarray. J. Nano Res. 2020, 65, 1–12. DOI: 10.4028/www.scientific.net/JNanoR.65.1.
  • Li, P.; Ruan, C.; Xu, J.; Xie, Y. A High-Performance Asymmetric Supercapacitor Electrode Based on a Three-Dimensional ZnMoO4/CoO Nanohybrid on Nickel Foam. Nanoscale 2019, 11, 13639–13649. DOI: 10.1039/c9nr03784e.
  • Xu, J.; Ruan, C.; Li, P.; Xie, Y. Excessive Nitrogen Doping of Tin Dioxide Nanorod Array Grown on Activated Carbon Fibers Substrate for Wire-Shaped Microsupercapacitor. Chem. Eng. J. 2019, 378, 14.
  • Li, P.; Ruan, C.; Xu, J.; Xie, Y. Enhanced Capacitive Performance of CoO-Modified NiMoO4 Nanohybrid as Advanced Electrodes for Asymmetric Supercapacitor. J. Alloys Compd. 2019, 791, 152–165. DOI: 10.1016/j.jallcom.2019.03.274.
  • Xu, J.; Ruan, C.; Li, P.; Mu, Y.; Xie, Y. S or N-Monodoping and S,N-Codoping Effect on Electronic Structure and Electrochemical Performance of Tin Dioxide: Simulation Calculation and Experiment Validation. Electrochim. Acta 2020, 340, 135950. DOI: 10.1016/j.electacta.2020.135950.
  • Bao, W.; Wu, Y.; Xie, Y.; Yao, C. Fabrication and Electrochemical Performance of Nickel Oxide Nanoparticles Anchored Titanium Dioxide Nanotube Array Hybrid Electrode. Funct. Mater. Lett. 2020, 13, 2051017. DOI: 10.1142/S1793604720510170.
  • Nie, R.; Wang, Q.; Sun, P.; Wang, R.; Yuan, Q.; Wang, X. Pulsed Laser Deposition of NiSe2 Film on Carbon Nanotubes for High-Performance Supercapacitor. Eng. Sci. 2018, 6, 22–29.
  • Dong, H.; Li, Y.; Chai, H.; Cao, Y.; Chen, X. Hydrothermal Synthesis of CuCo2S4 Nano-Structure and N-Doped Graphene for High-Performance Aqueous Asymmetric Supercapacitors. ES Energy Environ. 2019, 4, 19–26.
  • Vargas, O.; Caballero, A.; Hernan, L.; Morales, J. M. Improved Capacitive Properties of Layered Manganese Dioxide Grown as Nanowires. J. Power Sources 2011, 196, 3350–3354. DOI: 10.1016/j.jpowsour.2010.11.097.
  • Chen, Y.; Xie, Y. Electrochemical Performance of Manganese Coordinated Polyaniline. Adv. Electron. Mater. 2019, 5, 1900816. DOI: 10.1002/aelm.201900816.
  • Li, S. W.; Wang, X. H.; Shen, C. W.; Wang, J. G.; Kang, F. Y. Nanostructured Manganese Dioxides as Active Materials for Micro-Supercapacitors. Micro Nano Lett. 2012, 7, 744–748. DOI: 10.1049/mnl.2012.0226.
  • Zhang, Q. Z.; Zhang, D.; Miao, Z. C.; Zhang, X. L.; Chou, S. L. Research Progress in MnO2 -Carbon Based Supercapacitor Electrode Materials. Small 2018, 14, e1702883. DOI: 10.1002/smll.201702883.
  • Prasath, A.; Athika, M.; Duraisamy, E.; Sharma, A. S.; Elumalai, P. Carbon‐Quantum‐Dot‐Derived Nanostructured MnO2 and Its Symmetrical Supercapacitor Performances. ChemistrySelect 2018, 3, 8713–8723. DOI: 10.1002/slct.201801950.
  • Ruan, C.; Xie, Y. Electrochemical Performance of Activated Carbon Fiber with Hydrogen Bond-Induced High Sulfur/Nitrogen Doping. RSC Adv. 2020, 10, 37631–37643. DOI: 10.1039/D0RA06724E.
  • Ruan, C.; Li, P.; Xu, J.; Xie, Y. Electrochemical Performance of Hybrid Membrane of Polyaniline Layer/Full Carbon Layer Coating on Nickel Foam. Prog. Org. Coat. 2020, 139, 105455. DOI: 10.1016/j.porgcoat.2019.105455.
  • Hou, Y.; Cheng, Y. W.; Hobson, T.; Liu, J. Design and Synthesis of Hierarchical MnO2 Nanospheres/Carbon Nanotubes/Conducting Polymer Ternary Composite for High Performance Electrochemical Electrodes. Nano Lett. 2010, 10, 2727–2733. DOI: 10.1021/nl101723g.
  • Lei, Z.; Shi, F.; Lu, L. Incorporation of MnO2-Coated Carbon Nanotubes between Graphene Sheets as Supercapacitor Electrode. ACS Appl. Mater. Interfaces 2012, 4, 1058–1064. DOI: 10.1021/am2016848.
  • Huang, Z.; Song, Y.; Feng, D.; Sun, Z.; Sun, X.; Liu, X. High Mass Loading MnO2 with Hierarchical Nanostructures for Supercapacitors. ACS Nano 2018, 12, 3557–3567. DOI: 10.1021/acsnano.8b00621.
  • Hassan, S.; Suzuki, M.; Mori, S.; El-Moneim, A. A. MnO2/Carbon Nanowalls Composite Electrode for Supercapacitor Application. J. Power Sources 2014, 249, 21–27. DOI: 10.1016/j.jpowsour.2013.10.097.
  • Ghasemi, S.; Hosseini, S. R.; Boore-Talari, O. Sonochemical Assisted Synthesis MnO2/RGO Nanohybrid as Effective Electrode Material for Supercapacitor. Ultrason. Sonochem. 2018, 40, 675–685. DOI: 10.1016/j.ultsonch.2017.08.013.
  • Mai, L.; Li, H.; Zhao, Y.; Xu, L.; Xu, X.; Luo, Y.; Zhang, Z.; Ke, W.; Niu, C.; Zhang, Q. Fast Ionic Diffusion-Enabled Nanoflake Electrode by Spontaneous Electrochemical Pre-Intercalation for High-Performance Supercapacitor. Sci. Rep. 2013, 3, 1718.
  • Lu, X.; Huang, Z.; Tong, Y.; Li, G. Asymmetric Supercapacitors with High Energy Density Based on Helical Hierarchical Porous NaxMnO2 and MoO2. Chem. Sci. 2016, 7, 510–517. DOI: 10.1039/C5SC03326H.
  • Whitacre, J. F.; Tevar, A.; Sharma, S. NaMnO as a Positive Electrode Material for an Aqueous Electrolyte Sodium-Ion Energy Storage Device. Electrochem. Commun. 2010, 12, 463–466. DOI: 10.1016/j.elecom.2010.01.020.
  • Xie, Y. Capacitive Behavior of Sodium Ion Pre-Intercalation Manganese Dioxide Supported on Titanium Nitride Substrate. Nano 2020, 15, 2050152. DOI: 10.1142/S1793292020501520.
  • Wang, X. P.; Wang, C. Y.; Han, K.; Niu, C. J.; Meng, J. S.; Hu, P.; Xu, X. M.; Wang, Z. Y.; Li, Q.; Han, C. H.; et al. A Synergistic Na-Mn-O Composite Cathodes for High-Capacity Na-Ion Storage. Adv. Energy Mater. 2018, 8, 1802180. DOI: 10.1002/aenm.201802180.
  • Xie, Y. Capacitive Performance of Reduced Graphene Oxide Modified Sodium Ion-Intercalated Manganese Oxide Composite Electrode. J. Electrochem. Energy Stor. Conv. Stor. 2021, 18, 031007.
  • Liu, C.; Huang, S.; Zhao, K. J.; Xiong, S. T.; Xu, W. X.; Zhang, S. Y. Ethanol Interfacial Assembly of Na0.44MnO2 Nanorod/Active Carbon toward the Fabrication of High-Density Hybrid Films for Binder-Free Supercapacitor Electrode. J. Nanopart. Res. 2019, 21, 11.
  • Chen, T.; Bae, J. Facile One-Pot Synthesis of Na0.9MnO2 Nanowires and Their Applications for High Performance Electrochemical Capacitors. Mater. Lett. 2018, 223, 223–226. DOI: 10.1016/j.matlet.2018.03.175.
  • Karikalan, N.; Karuppiah, C.; Chen, S. M.; Velmurugan, M.; Gnanaprakasam, P. Three-Dimensional Fibrous Network of Na0.21 MnO2 for Aqueous Sodium-Ion Hybrid Supercapacitors. Chemistry 2017, 23, 2379–2386. DOI: 10.1002/chem.201604878.
  • Xie, Y.; Zhou, Y. Enhanced Capacitive Performance of Activated Carbon Paper Electrode Material. J. Mater. Res. 2019, 34, 2472–2481. DOI: 10.1557/jmr.2019.224.
  • Xie, Y.; Zhang, Y. Electrochemical Performance of Carbon Paper Supercapacitor Using Sodium Molybdate Gel Polymer Electrolyte and Nickel Molybdate Electrode. J. Solid State Electrochem. 2019, 23, 1911–1927. DOI: 10.1007/s10008-019-04260-2.
  • Ruan, C.; Li, P.; Xu, J.; Chen, Y.; Xie, Y. Activation of Carbon Fiber for Enhancing Electrochemical Performance. Inorg. Chem. Front. 2019, 6, 3583–3597. DOI: 10.1039/C9QI01028A.
  • Lu, L.; Xie, Y. Phosphomolybdic Acid Cluster Bridging Carbon Dots and Polyaniline Nanofibers for Effective Electrochemical Energy Storage. J. Mater. Sci. 2019, 54, 4842–4858. DOI: 10.1007/s10853-018-03185-x.
  • Noce, R. D.; Eugenio, S.; Silva, T. M.; Carmezim, M. J.; Montemor, M. F. Electrodeposition: A Versatile, Efficient, Binder-Free and Room Temperature One-Step Process to Produce MnO2 Electrochemical Capacitor Electrodes. RSC Adv. 2017, 7, 32038–32043. DOI: 10.1039/C7RA04481J.
  • Chen, H.; Wang, Y.; Lv, Y. Catalytic Oxidation of NO over MnO2 with Different Crystal Structures. RSC Adv. 2016, 6, 54032–54040. DOI: 10.1039/C6RA10103H.
  • Su, D. W.; Wang, C. Y.; Ahn, H. J.; Wang, G. X. Single Crystalline Na0.7MnO2 Nanoplates as Cathode Materials for Sodium-Ion Batteries with Enhanced Performance. Chem. Eur. J. 2013, 19, 10884–10889. DOI: 10.1002/chem.201301563.
  • Chae, M. S.; Kim, H. J.; Bu, H. R.; Lyoo, J.; Attias, R.; Dlugatch, B.; Oliel, M.; Gofer, Y.; Hong, S. T.; Aurbach, D. The Sodium Storage Mechanism in Tunnel-Type Na0.44MnO2 Cathodes and the Way to Ensure Their Durable Operation. Adv. Energy Mater. 2020, 10, 2000564. DOI: 10.1002/aenm.202000564.
  • Yang, Z.; Vinodh, R.; Balakrishnan, B.; Rajmohan, R.; Kim, H.-J. Rational Design of Asymmetric Aqueous Supercapacitor Based on NAxMnO2 and N-Doped Reduced Graphene Oxide. J. Energy Stor. 2020, 28, 101293. DOI: 10.1016/j.est.2020.101293.
  • Wang, J.-A.; Ma, C.-C. M.; Hu, C.-C. Constructing a High-Performance Quasi-Solid-State Asymmetric Supercapacitor: NaxMnO2@CNT/WPU-PAAK-Na2SO4/AC-CNT. Electrochim. Acta 2020, 334, 135576. DOI: 10.1016/j.electacta.2019.135576.
  • Mu, Y.; Xie, Y. Theoretical and Experimental Comparison of Electrical Properties of Nickel(II) Coordinated and Protonated Polyaniline. J. Phys. Chem. C 2019, 123, 18232–18239. DOI: 10.1021/acs.jpcc.9b04550.
  • Mu, Y.; Ruan, C.; Li, P.; Xu, J.; Xie, Y. Enhancement of Electrochemical Performance of Cobalt (II) Coordinated Polyaniline: A Combined Experimental and Theoretical Study. Electrochim. Acta 2020, 338, 135881. DOI: 10.1016/j.electacta.2020.135881.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.