171
Views
3
CrossRef citations to date
0
Altmetric
Articles

A 3D nickel(II) coordination polymer constructed by mixed- ligand strategy: synthesis, crystal structure and sensing of Hg(II) ion

, , , , &
Pages 711-717 | Received 29 Oct 2020, Accepted 07 Jun 2021, Published online: 23 Jul 2021

References

  • El-Safty, S. A.; Shenashen, M. A. Optical Mesosensor for Capturing of Fe(III) and Hg(II) Ions from Water and Physiological Fluids. Sensor. Actuat. B 2013, 183, 58–70. DOI: 10.1016/j.snb.2013.03.041.
  • Shenashen, M. A.; Elshehy, E. A.; El-Safty, S. A.; Khairy, M. Visual Monitoring and Removal of Divalent Copper, Cadmium, and Mercury Ions from Water by Using Mesoporous Cubic Ia3d Aluminosilica Sensors. Sep. Purif. Technol. 2013, 116, 73–86. DOI: 10.1016/j.seppur.2013.05.011.
  • Wu, X.-J.; Kong, F.; Zhao, C.-Q.; Ding, S.-N. Ratiometric Fluorescent Nanosensors for Ultra-Sensitive Detection of Mercury Ions Based on AuNCs/MOFs. Analyst 2019, 144, 2523–2530. DOI: 10.1039/c8an02414f.
  • El-Safty, S. A.; Shenashen, M. A.; El-Safty, S. A. Mercury-Ion Optical Sensors. Trac-Trend Anal. Chem. 2012, 38, 98–115. DOI: 10.1016/j.trac.2012.05.002.
  • Sakthinathan, S.; Tamizhdurai, P.; Ramesh, A.; Chiu, T.-W.; Mangesh, V. L.; Veerarajan, S.; Shanthi, K. Platinum Incorporated Mordenite Zeolite Modified Glassy Carbon Electrode Used for Selective Electrochemical Detection of Mercury Ions. Micropor. Mesopor. Mater. 2020, 292, 109770. DOI: 10.1016/j.micromeso.2019.109770.
  • de la Calle, I.; Lavilla, I.; Bartolome-Alonso, H.; Bendicho, C. Solid-Phase Extraction of Hg(II) Using Cellulose Filters Modified with Silver Nanoparticles Followed by Pyrolysis and Detection by a Direct Mercury Analyzer. Spectrochim Acta B 2019, 161, 105697. DOI: 10.1016/j.sab.2019.105697.
  • Zhou, J.; Tian, Y.; Wu, X.; Hou, X. Visible Light Photochemical Vapor Generation Using Metal-Free g-C3N4/CQDs Composites as Catalyst: Selective and Ultrasensitive Detection of Mercury by ICP-MS. Microchem. J. 2017, 132, 319–326. DOI: 10.1016/j.microc.2017.02.016.
  • Marieeswaran, M.; Panneerselvam, P. A Magnetic Nanoscale Metal-Organic Framework (MNMOF) as a Viable Fluorescence Quencher Material for ssDNA and for the Detection of Mercury Ions via a Novel Quenching-Quenching Mechanism. RSC Adv. 2020, 10, 3705–3714. DOI: 10.1039/C9RA08274C.
  • Tang, S. R.; Tong, P.; Wang, M. L.; Chen, J. H.; Li, G. W.; Zhang, L. A Novel Colorimetric Sensor for Hg(2+) based on hybridization chain reaction and silver nanowire amplification. Chem. Commun. (Camb) 2015, 51, 15043–15046. DOI: 10.1039/c5cc05773f.
  • Yang, J. H.; Zhang, Y.; Zhang, L.; Wang, H. L.; Nie, J. F.; Qin, Z. X.; Li, J.; Xiao, W. C. Analyte-Triggered Autocatalytic Amplification Combined with Gold Nanoparticle Probes for Colorimetric Detection of Heavy-Metal Ions. Chem. Commun. (Camb) 2017, 53, 7477–7480. DOI: 10.1039/c7cc02198d.
  • Chen, G. S.; Hai, J.; Wang, H.; Liu, W. S.; Chen, F. J.; Wang, B. D. Gold Nanoparticles and the Corresponding Filter Membrane as Chemosensors and Adsorbents for Dual Signal Amplification Detection and Fast Removal of Mercury(II). Nanoscale 2017, 9, 3315–3321. DOI: 10.1039/c6nr09638g.
  • Li, Y. K.; He, Y. L.; Guo, F. Y.; Zhang, S. P.; Liu, Y. Y.; Lustig, W. P.; Bi, S. M.; Williams, L. J.; Hu, J.; Li, J. NanoPOP: Solution-Processable Fluorescent Porous Organic Polymer for Highly Sensitive, Selective, and Fast Naked Eye Detection of Mercury. ACS Appl. Mater. Interfaces 2019, 11, 27394–27401. DOI: 10.1021/acsami.9b06488.
  • Egan, J. G.; Hynes, A. J.; Fruehwald, H. M.; Ebralidze, I. I.; King, S. D.; Esfahani, R. A. M.; Naumkin, F. Y.; Easton, E. B.; Zenkina, O. V. A Novel Material for the Fetection and Removal of Mercury(II) Based on a 2,6-Bis(2-Thienyl)Pyridine Receptor. J. Mater. Chem. C. 2019, 7, 10187–10195. DOI: 10.1039/C9TC03201K.
  • Li, H.; Liu, H.; Zhang, J.; Cheng, Y.; Zhang, C.; Fei, X.; Xian, Y. Platinum Nanoparticle Encapsulated Metal-Organic Frameworks for Colorimetric Measurement and Facile Removal of Mercury(II). ACS Appl. Mater. Interfaces 2017, 9, 40716–40725. DOI: 10.1021/acsami.7b13695.
  • Kim, H. J.; Lee, H. I. Thermo-Tunable Colorimetric Detection of Mercury(II) Ions Driven by the Temperature-Dependent Assembly and Disassembly of a Block Copolymer. Polym. Chem. 2019, 10, 4017–4024. DOI: 10.1039/C9PY00620F.
  • Dhaka, S.; Kumar, R.; Deep, A.; Kurade, M. B.; Ji, S.-W.; Jeon, B.-H. Metal-Organic Frameworks (MOFs) for the Removal of Emerging Contaminants from Aquatic Environments. Coord. Chem. Rev. 2019, 380, 330–352. DOI: 10.1016/j.ccr.2018.10.003.
  • Feng, M. B.; Zhang, P.; Zhou, H. C.; Sharma, V. K. Water-Stable Metal-Organic Frameworks for Aqueous Removal of Heavy Metals and Radionuclides: A Review. Chemosphere 2018, 209, 783–800. DOI: 10.1016/j.chemosphere.2018.06.114.
  • Wen, J.; Fang, Y.; Zeng, G. M. Progress and Prospect of Adsorptive Removal of Heavy Metal Ions from Aqueous Solution Using Metal-Organic Frameworks: A Review of Studies from the Last Decade. Chemosphere 2018, 201, 627–643. DOI: 10.1016/j.chemosphere.2018.03.047.
  • Kobielska, P. A.; Howarth, A. J.; Farha, O. K.; Nayak, S. Metal-Organic Frameworks for Heavy Metal Removal from Water. Coord. Chem. Rev. 2018, 358, 92–107. DOI: 10.1016/j.ccr.2017.12.010.
  • Gao, Q.; Xu, J.; Bu, X.-H. Recent Advances about Metal-Organic Frameworks in the Removal of Pollutants from Wastewater. Coord. Chem. Rev. 2019, 378, 17–31. DOI: 10.1016/j.ccr.2018.03.015.
  • Jaros, S. W.; Sokolnicki, J.; Wołoszyn, A.; Haukka, M.; Kirillov, A. M.; Smoleński, P. A Novel 2D Coordination Network Built from Hexacopper(I)-Iodide Clusters and Cagelike Aminophosphine Blocks for Reversible "Turn-On'' Sensing of Aniline. J. Mater. Chem. C. 2018, 6, 1670–1678. DOI: 10.1039/C7TC03863A.
  • Yang, L.-Z.; Wang, J.; Kirillov, A. M.; Dou, W.; Xu, C.; Fang, R.; Xu, C.-L.; Liu, W.-S. 2D Lanthanide MOFs Driven by a Rigid 3,5-Bis(3-Carboxy-Phenyl)Pyridine Building Block: Solvothermal Syntheses, Structural Features, and Photoluminescence and Sensing Properties. Crystengcomm 2016, 18, 6425–6436. DOI: 10.1039/C6CE00885B.
  • Zhang, Q.; Jiang, X.; Kirillov, A. M.; Zhang, Y.; Hu, M.; Liu, W.; Yang, L.; Fang, R.; Liu, W. Covalent Construction of Sustainable Hybrid UiO-66-NH2@Tb-CP Material for Selective Removal of Dyes and Detection of Metal Ions. ACS Sustain. Chem. Eng. 2019, 7, 3203–3212. DOI: 10.1021/acssuschemeng.8b05146.
  • Hasankola, Z. S.; Rahimi, R.; Shayegan, H.; Moradi, E.; Safarifard, V. Removal of Hg2+ Heavy Metal Ion Using a Highly Stable Mesoporous Porphyrinic Zirconium Metal-Organic Framework. Inorg. Chim. Acta 2020, 501, DOI: 10.1016/j.ica.2019.119264.
  • Chen, H.-L.; Li, R.-T.; Wu, K.-Y.; Hu, P.-P.; Zhang, Z.; Huang, N.-H.; Zhang, W.-H.; Chen, J.-X. Experimental and Theoretical Validations of a One-Pot Sequential Sensing of Hg2+ and Biothiols by a 3D Cu-Based Zwitterionic Metal- Organic Framework. Talanta 2020, 210, 120596. DOI: 10.1016/j.talanta.2019.120596.
  • Zhang, L.; Wang, J.; Wang, H.; Zhang, W.; Zhu, W.; Du, T.; Ni, Y.; Xie, X.; Sun, J.; Wang, J. Rational Design of Smart Adsorbent Equipped with a Sensitive Indicator via Ligand Exchange: A Hierarchical Porous Mixed-Ligand MOF for Simultaneous Removal and Detection of Hg2+. Nano Res. 2021, 14, 1523–1532. DOI: 10.1007/s12274-020-3211-0.
  • Kokkinos, C.; Economou, A.; Pournara, A.; Manos, M.; Spanopoulos, I.; Kanatzidis, M.; Tziotzi, T.; Petkov, V.; Margariti, A.; Oikonomopoulos, P.; Papaefstathiou, G. S. 3D-Printed Lab-in-a-Syringe Voltammetric Cell Based on a Working Electrode Modified with a Highly Efficient Ca-MOF Sorbent for the Determination of Hg(II). Sens. Actuators B 2020, 321. DOI: 10.1016/j.snb.2020.128508.
  • Arıcı, M.; Dikilitaş, Y. C.; Erer, H.; Yeşilel, O. Z. Cobalt(ii) and Zinc(ii)-Coordination Polymers Constructed from Ether-Linked Tetracarboxylic Acid and Isomeric Bis(Imidazole) Linkers: Luminescence-Based Fe(Iii) Detection in Aqueous Media. CrystEngComm 2020, 22, 5776–5785. DOI: 10.1039/D0CE00732C.
  • Wang, X.; Liu, Y.; Lin, H.; Xu, N.; Liu, G.; Wang, X.; Chang, Z.; Li, J. A Novel Cadmium Metal-Organic Framework-Based Multiresponsive Fluorescent Sensor Demonstrating Outstanding Sensitivities and Selectivities for Detecting NB, Fe3+ Ions and Cr2O72- Anions. CrystEngComm 2020, 22, 6626–6631. DOI: 10.1039/D0CE01139H.
  • Xu, C.; Bi, C.; Zhu, Z.; Luo, R.; Zhang, X.; Zhang, D.; Fan, C.; Cui, L.; Fan, Y. Metal-Organic Frameworks with 5,5′-(1,4-Xylylenediamino) Diisophthalic Acid and Various Nitrogen-Containing Ligands for Selectively Sensing Fe(III)/Cr(IV) and Nitroaromatic Compounds. CrystEngComm 2019, 21, 2333–2344. DOI: 10.1039/c9ce00005d.
  • Chen, C. H.; Wang, X. S.; Li, L.; Huang, Y. B.; Cao, R. Highly Selective Sensing of Fe3+ by an Anionic Metal-Organic Framework Containing Uncoordinated Nitrogen and Carboxylate Oxygen Sites. Dalton Trans. 2018, 47, 3452–3458. DOI: 10.1039/c8dt00088c.
  • Sun, Q.-Z.; Lu, J.-F.; Chai, L.-Y.; Liu, N.-W.; Zhu, X.-W.; Kang, H.-Y.; Liu, H. Synthesis, Structures and Magnetic Properties of Four 3D Heterometallic Cobalt(II)-Barium(II) Coordination Polymers. Transit. Met. Chem. 2018, 43, 439–450. DOI: 10.1007/s11243-018-0231-7.
  • Huang, Y.; Lin, J.; Zhang, W.; Zhang, B.; Sun, Q. Ferrocenylmethylthio-Maleonitrile for Selective Recognition of Hg(II) Ion. Inorg. Chem. Commun. 2019, 105, 129–134. DOI: 10.1016/j.inoche.2019.04.032.
  • Lu, J.; Zhang, N.; Zhu, X.; Sun, Q.; Zhang, B.; Liu, H.; Zhao, B. N,N-Di(4-Pyridyl)Animomethylferrocene Zinc(II) and Cadmium(II) Complexes: Synthesis, Crystal Structures and Electrochemistry. Inorg. Chem. Commun. 2019, 103, 53–56. DOI: 10.1016/j.inoche.2019.03.011.
  • Sun, Q.; Zhu, X.; Zhang, N.; Zhang, B.; Lu, J.; Liu, H. Auxiliary Ligand-Assisted Structural Variation of Two Co(II) Metal-Organic Frameworks: Syntheses, Crystal Structure and Magnetic Properties. Inorg. Chem. Commun. 2019, 99, 172–175. DOI: 10.1016/j.inoche.2018.11.019.
  • Sheldrick, G. M. SHELXS-97, Program for X-Ray Crystal Structure Determination; University of Göttingen: Göttingen, Germany, 1997.
  • Sheldrick, G. M. SHELXL-97, Program for the Refinement of Crystal Structures from Diffraction Data; University of Göttingen: Göttingen, Germany, 1997.
  • Zhao, Y.; Li, K.; Li, J. Solvothermal Synthesis of Multifunctional Coordination Polymers. Z. Naturforsch 2010, 65, 976–998. DOI: 10.1515/znb-2010-0804.
  • Gu, J.; Wen, M.; Cai, Y.; Shi, Z.; Arol, A. S.; Kirillova, M. V.; Kirillov, A. M. Metal-Organic Architectures Assembled from Multifunctional Polycarboxylates: Hydrothermal Self-Assembly, Structures, and Catalytic Activity in Alkane Oxidation . Inorg. Chem. 2019, 58, 2403–2412. DOI: 10.1021/acs.inorgchem.8b02926.
  • Gu, J.-Z.; Liang, X.-X.; Cai, Y.; Wu, J.; Shi, Z.-F.; Kirillov, A. M. Hydrothermal Assembly, Structures, Topologies, Luminescence, and Magnetism of a Novel Series of Coordination Polymers Driven by a Trifunctional Nicotinic Acid Building Block. Dalton Trans. 2017, 46, 10908–10925. DOI: 10.1039/c7dt01742a.
  • Gu, J.; Wen, M.; Cai, Y.; Shi, Z.; Nesterov, D. S.; Kirillova, M. V.; Kirillov, A. M. Cobalt(II) Coordination Polymers Assembled from Unexplored Pyridine-Carboxylic Acids: Structural Diversity and Catalytic Oxidation of Alcohols. Inorg. Chem. 2019, 58, 5875–5885. DOI: 10.1021/acs.inorgchem.9b00242.
  • Blatov, V. A. Nanocluster Analysis of Intermetallic Structures with the Program Package TOPOS. Struct. Chem. 2012, 23, 955–963. DOI: 10.1007/s11224-012-0013-3.
  • Xiao, J. N.; Liu, J. J.; Gao, X. C.; Ji, G. F.; Wang, D. B.; Liu, Z. L. A Multi-Chemosensor Based on Zn-MOF: Ratio-Dependent Color Transition Detection of Hg (II) and Highly Sensitive Sensor of Cr (VI). Sensor. Actuat. B 2018, 269, 164–172. DOI: 10.1016/j.snb.2018.04.129.
  • Wu, Y. P.; Xu, G. W.; Dong, W. W.; Zhao, J.; Li, D. S.; Zhang, J.; Bu, X. H. Anionic Lanthanide MOFs as a Platform for Iron-Selective Sensing, Systematic Color Tuning, and Efficient Nanoparticle Catalysis. Inorg. Chem. 2017, 56, 1402–1411. DOI: 10.1021/acs.inorgchem.6b02476.
  • Santra, D. C.; Bera, M. K.; Sukul, P. K.; Malik, S. Charge-Transfer-Induced Fluorescence Quenching of Anthracene Derivatives and Selective Detection of Picric Acid. Chemistry 2016, 22, 2012–2019. DOI: 10.1002/chem.201504126.
  • Buragohain, A.; Yousufuddin, M.; Sarma, M.; Biswas, S. 3D Luminescent Amide-Functionalized Cadmium Tetrazolate Framework for Selective Detection of 2,4,6-Trinitrophenol. Cryst. Growth Des. 2016, 16, 842–851. DOI: 10.1021/acs.cgd.5b01427.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.