108
Views
1
CrossRef citations to date
0
Altmetric
Articles

Effect of polyethylene glycol capping on structural, optical and thermal properties of ZnS:Ni2+ nanoparticles

, , , &
Pages 726-733 | Received 31 Oct 2020, Accepted 07 Jun 2021, Published online: 19 Jul 2021

References

  • Fang, X.; Zhai, T.; Gautam, U. K.; Li, L.; Wu, L.; Bando, Y.; Golberg, D. ZnS Nanostructures: From Synthesis to Applications. Prog. Mat. Sci. 2011, 56, 175–287. DOI: 10.1016/j.pmatsci.2010.10.001.
  • Weller, H. Colloidal Semiconductor Q-Particles: Chemistry in the Transition Region between Solid State and Molecules. Angew. Chem. Int. Ed. Engl. 1993, 32, 41–53. DOI: 10.1002/anie.199300411.
  • Karunakaran, C.; Jayabharathi, J.; Jayamoorthy, K. Fluorescence Quenching of Organic Molecule by Insulator. Spectrochim. Acta A. Mol. Biomol. Spectrosc. 2013, 112, 417–421. DOI: 10.1016/j.saa.2013.04.093.
  • Karunakaran, C.; Jayabharathi, J.; Sathishkumar, R.; Jayamoorthy, K. Interaction of Fluorescent Sensor with Superparamagnetic Iron Oxide Nanoparticles. Spectrochim. Acta A. Mol. Biomol. Spectrosc. 2013, 110, 151–156. DOI: 10.1016/j.saa.2013.03.042.
  • Karunakaran, C.; Jayabharathi, J.; Jayamoorthy, K. Benzimidazole: Dramatic Luminescence Turn-on by ZnO Nanocrystals. Measurement 2013, 46, 3883–3886. DOI: 10.1016/j.measurement.2013.07.046.
  • Karunakaran, C.; Jayabharathi, J.; Jayamoorthy, K. Photoinduced Electron Transfer from Benzimidazole to Nano WO3, CuO and Fe2O3. A New Approach on LUMO–CB Energy-Binding Efficiency Relationship. Sensors and Actuators B. Chem. 2013, 182, 514–520. DOI: 10.1016/j.snb.2013.03.051.
  • Ummartyotin, S.; Bunnak, N.; Juntaro, J.; Sain, M.; Manuspiya, H. Hybrid Organic–Inorganic of ZnS Embedded PVP Nanocomposite Film for Photoluminescent Application. Manusp. Comp. Ren. Phys. 2012, 13, 994–1000. DOI: 10.1016/j.crhy.2012.09.008.
  • Pathak, C. S.; Mishra, D. D.; Agarwala, V.; Mandal, M. K. Optical Properties of ZnS Nanoparticles Produced by Mechanochemical Method. Ceram. Int. 2012, 38, 6191–6195. DOI: 10.1016/j.ceramint.2012.04.070.
  • Ashkarran, A. A. Absence of Photocatalytic Activity in the Presence of the Photoluminescence Property of Mn–ZnS Nanoparticles Prepared by a Facile Wet Chemical Method at Room Temperature. Mat. Sci. Semi. Proce. 2014, 17, 1–6. DOI: 10.1016/j.mssp.2013.08.003.
  • Amaranatha Reddy, D.; Murali, G.; Poornaprakash, B.; Vijayalakshmi, R. P.; Reddy, B. K. Effect of Annealing Temperature on Optical and Magnetic Properties of Cr Doped ZnS Nanoparticles. Solid State Commun. 2012, 152, 596–602. DOI: 10.1016/j.ssc.2012.01.023.
  • Karthik, N.; Jebakumar, T. N.; Edison, I.; Atchudan, R.; Sethuraman, M. G. Energy and Environmental Applications of Ultrasonically Sulfur Doped Copper-Nickel Hydroxides with Heterostructures. J. Alloys Compd. 2017, 729, 126–136. DOI: 10.1016/j.jallcom.2017.09.123.
  • Immanuel Edison, T. N. J.; Atchudan, R.; Karthik, N.; Ganesh, K.; Xiong, D.; Lee, Y. R. A Novel Binder-Free Electro-Synthesis of Hierarchical Nickel Sulfide Nanostructures on Nickel Foam as a Battery-Type Electrode for Hybrid-Capacitors. Fuel 2020, 276, 118077. DOI: 10.1016/j.fuel.2020.118077.
  • Edison, T. N. J. I.; Atchudan, R.; Karthik, N.; Sethuraman, M. G.; Lee, Y. R. Ultrasonic Synthesis, Characterization and Energy Applications of Ni–B Alloy Nanorods. J. Taiwan Inst. Chem. Eng. 2017, 80, 901–907. DOI: 10.1016/j.jtice.2017.07.034.
  • Edison, T. N. J. I.; Atchudan, R.; Lee, Y. R. Binder-Free Electro-Synthesis of Highly Ordered Nickel Oxide Nanoparticles and Its Electrochemical Performance. Electrochim. Acta 2018, 283, 1609–1617. DOI: 10.1016/j.electacta.2018.07.101.
  • Atchudan, R.; Edison, T. N. J. I.; Perumal, S.; Karthikeyan, D.; Lee, Y. R. Facile Synthesis of Zinc Oxide Nanoparticles Decorated Graphene Oxide Composite via Simple Solvothermal Route and Their Photocatalytic Activity on Methylene Blue Degradation. J. Photochem. Photobiol. B. 2016, 162, 500–510. DOI: 10.1016/j.jphotobiol.2016.07.019.
  • Suresh, S.; Nisha, P.; Saravanan, P.; Jayamoorthy, K.; Karthikeyan, S. Investigation of the Thermal and Dielectric Behavior of Epoxy Nano-Hybrids by Using Silane Modified Nano-ZnO. Silicon 2018, 10, 1291–1303. DOI: 10.1007/s12633-017-9604-3.
  • Suresh, S.; Karthikeyan, S.; Jayamoorthy, K. Spectral Investigations to the Effect of Bulk and Nano ZnO on Peanut Plant Leaves. Karbala Int. J. Modern Sci. 2016, 2, 69–77. DOI: 10.1016/j.kijoms.2016.01.005.
  • Suresh, S.; Saravanan, P.; Jayamoorthy, K.; Kumar, S. A.; Karthikeyan, S. Development of Silane Grafted ZnO Core Shell Nanoparticles Loaded Diglycidyl Epoxy Nanocomposites Film for Antimicrobial Applications. Mater. Sci. Eng. C. Mater. Biol. Appl. 2016, 64, 286–292. DOI: 10.1016/j.msec.2016.03.096.
  • Saravanan, P.; Jayamoorthy, K.; Kumar, S. A. Switch-On Fluorescence and Photo-Induced Electron Transfer of 3-Aminopropyltriethoxysilane to ZnO: Dual Applications in Sensors and Antibacterial Activity. Sens. Actuat. B. Chem. 2015, 221, 784–791. DOI: 10.1016/j.snb.2015.05.069.
  • Karunakaran, C.; Jayabharathi, J.; Jayamoorthy, K.; Vinayagamoorthy, P. Electrical, Optical, and Visible Light-Photocatalytic Properties of Zirconium-Doped BiVO4 Nanoparticles. Mat. Express 2014, 4, 125–292. DOI: 10.1166/mex.2014.1176.
  • Tshabalala, M. A.; Dejene, B. F.; Swart, H. C. Synthesis and Characterization of ZnO Nanoparticles Using Polyethylene Glycol (PEG). Physica B: Conden. Mat. 2012, 407, 1668–1671. DOI: 10.1016/j.physb.2011.09.113.
  • Venkata Subbaiah, Y. P.; Prathap, P.; Ramakrishna Reddy, K. T. Structural, Electrical and Optical Properties of ZnS Films Deposited by Close-Spaced Evaporation. Appl. Surf. Sci. 2006, 253, 2409–2415. DOI: 10.1016/j.apsusc.2006.04.063.
  • Jadhav, S. S.; Shirsath, S. E.; Toksha, B. G.; Patange, S. M.; Shengule, D. R.; Jadhav, K. M. Structural and Electric Properties of Zinc Substituted NiFe2O4 Nanoparticles Prepared by co-Precipitation Method. Physica B. 2010, 405, 2610–2614. DOI: 10.1016/j.physb.2010.03.008.
  • Pal, J.; Chauhan, P. Study of Physical Properties of Cobalt Oxide (Co3O4) Nanocrystals. Mat. Character. 2010, 61, 575–579. DOI: 10.1016/j.matchar.2010.02.017.
  • Mall, M.; Kumar, L. Optical Studies of Cd2+ and Mn2+ Co-Doped ZnS Nanocrystals. J. Lumin. 2010, 130, 660–665. DOI: 10.1016/j.jlumin.2009.11.012.
  • Venkataraju, C. Effect of Nickel on the Structural Properties of Mn Zn Ferrite Nano Particles. Appl. Phys. Res. 2009, 1, 41.
  • Soni, H.; Chawda, M.; Bodas, D. Electrical and Optical Characteristics of Ni Doped ZnS Clusters. Mater. Lett. 2009, 63, 767–769. DOI: 10.1016/j.matlet.2008.12.052.
  • Kumar, S.; Verma, N. K. Ferromagnetic and Weak Superparamagnetic like Behavior of Ni-Doped ZnS Nanocrystals Synthesized by Reflux Method. J. Mater. Sci.: Mater. Electron. 2014, 25, 1132–1137. DOI: 10.1007/s10854-013-1700-6.
  • Li, Y.; Yi, R.; Liu, X. Synthesis and Properties of Ni/ZnS Magnetic Luminescent Bifunctional Nanocomposites. J. Alloy. Comp. 2009, 486, L1–L4. DOI: 10.1016/j.jallcom.2009.06.141.
  • Manifacier, J. C.; Murcia, M. D.; Fillard, J. P.; Vicario, E. Optical and Electrical Properties of SnO2 Thin Films in Relation to Their Stoichiometric Deviation and Their Crystalline Structure. Thin Solid Films 1977, 41, 127–135. DOI: 10.1016/0040-6090(77)90395-9.
  • Majeed Khan, M. A.; Wasi Khan, M.; Alhoshan, A.; Alsalhi, M. S.; Aldwayyan, A. S. Influences of Co Doping on the Structural and Optical Properties of ZnO Nanostructured. Appl. Phys. A. 2010, 100, 45–51. DOI: 10.1007/s00339-010-5840-8.
  • Goudarzi, A.; Aval, G. M.; Park, S. S.; Choi, M.-C.; Sahraei, R.; Ullah, M. H.; Avane, A.; Ha, C.-S. Low-Temperature Growth of Nanocrystalline Mn-Doped ZnS Thin Films Prepared by Chemical Bath Deposition and Optical Properties. Chem. Mater. 2009, 21, 2375–2385. DOI: 10.1021/cm803329w.
  • Woggon, U. Optical Properties of Semiconductor Quantum Dots; Springer: Berlin, 1999.
  • Venkatesan, A.; Krishna Chandar, N.; Arjunan, S.; Marimuthu, K. H.; Mohan Kumar, R.; Jayavel, R. Structural, Morphological and Optical Properties of Highly Monodispersed PEG Capped V2O5 Nanoparticles Synthesized through a Non-Aqueous Route. Mater. Lett. 2013, 91, 228–231. DOI: 10.1016/j.matlet.2012.09.117.
  • Sudha, M.; Senthilkumar, S.; Hariharan, R.; Suganthi, A.; Rajarajan, M. Synthesis, Characterization and Study of Photocatalytic Activity of Surface Modified ZnO Nanoparticles by PEG Capping. J. Sol.-Gel. Sci. Technol. 2013, 65, 301–310. DOI: 10.1007/s10971-012-2936-y.
  • Tunc, S.; Duman, O. Colloids and Surfaces A: Physicochem. Eng. Aspects 2008, 317, 93–99. DOI: 10.1016/j.colsurfa.2007.09.039.
  • Gözüak, F.; Köseoğlu, Y.; Baykal, A.; Kavas, H. Synthesis and Characterization of CoxZn1 − xFe2O4 Magnetic Nanoparticles via a PEG-Assisted Route. J. Magnetism Magnetic Mater. 2009, 321, 2170–2177. DOI: 10.1016/j.jmmm.2009.01.008.
  • Lee, S.; Song, D.; Kim, D.; Lee, J.; Kim, S.; Park, I. Y.; Choi, Y. D. Effects of Synthesis Temperature on Particle Size/Shape and Photoluminescence Characteristics of ZnS:Cu Nanocrystals. Mater. Lett. 2004, 58, 342–346. DOI: 10.1016/S0167-577X(03)00483-X.
  • Shahi, A. K.; Pandey, B. K.; Gopal, R. PEG Mediated Solvothermal Synthesis of Fine ZnS Sub-Micro and Microspheres and Their Optical Properties. Mater. Lett. 2014, 116, 112–115. DOI: 10.1016/j.matlet.2013.10.099.
  • Nirmala Jothi, N. S.; Sagayaraj, P. Investigation on the Synthesis, Structural and Optical Properties of ZnO Nanorods Prepared Under CTAB Assisted Hydrothermal Conditions. Arch. Appl. Sci. Res. 2012, 4, 1079–1090.
  • Theivasanthi, T.; Kartheeswari, N.; Alagar, M. Chemical Precipitation Synthesis of Ferric Chloride Doped Zinc Sulphide Nanoparticles Andtheir Characterization Studies. Chem. Sci. Trans. 2013, 2, 497–507. DOI: 10.7598/cst2013.207.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.