103
Views
1
CrossRef citations to date
0
Altmetric
Articles

Green synthesis of triazolo[1,2-a]indazole-triones using Origanum majorana-capped silver nanoparticles

Pages 1077-1086 | Received 08 Dec 2020, Accepted 07 Jun 2021, Published online: 20 Jul 2021

References

  • Ostuni, E.; Chen, C. S.; Ingber, D. E.; Whitesides, G. M. Selective Deposition of Proteins and Cells in Arrays of Microwells. Langmuir 2001, 17, 2828–2834. DOI: 10.1021/la001372o.
  • Joannopoulos, J. D.; Johnson, S. G.; Winn, J. N.; Meade, R. D. Photonic Crystals: Molding the Flow of Light, 2nd ed.; Princeton University Press: Princeton, NJ, 2008.
  • Guo, X.; Baumgarten, M.; Müllen, K. Designing p-Conjugated Polymers for Organic Electronics. Prog. Polym. Sci. 2013, 38, 1832–1908. DOI: 10.1016/j.progpolymsci.2013.09.005.
  • Arinstein, A.; Burman, M.; Gendelman, O.; Zussman, E. Effect of Supramolecular Structure on Polymer Nanofibre Elasticity. Nat. Nanotechnol. 2007, 2, 59–62. DOI: 10.1038/nnano.2006.172.
  • Abbiati, G.; Rossi, E. Silver and Gold-Catalyzed Multicomponent Reactions. Beilstein J. Org. Chem. 2014, 10, 481–513. DOI: 10.3762/bjoc.10.46.
  • (a) Dong, X.-Y.; Gao, Z.-W.; Yang, K.-F.; Zhang, W.-Q.; Xu, L.-W. Nanosilver as a New Generation of Silver Catalysts in Organic Transformations for Efficient Synthesis of Fine Chemicals. Catal. Sci. Technol. 2015, 5, 2554–2574. DOI: 10.1039/C5CY00285K; (b) Bhosale, M. A.; Bhanage, B. M. Silver Nanoparticles: Synthesis, Characterization and their Application as a Sustainable Catalyst for Organic Transformations. Curr. Org. Chem. 2015, 19, 708–727. DOI: 10.2174/1385272819666150207001154; (c) Abuo El-Nour, K. M. M.; Eftaiha, A.; AlWarthan, A.; Ammar, R. A. A. Synthesis and Applications of Silver Nanoparticles. Arabian J. Chem. 2010, 3, 135–140. DOI: 10.1016/j.arabjc.2010.04.008; (d) Díez-Gonzalez, S.; Nolan, S. P. Copper, Silver, and Gold Complexes in Hydrosilylation Reactions. Acc. Chem. Res. 2008, 41, 349–358. DOI: 10.1021/ar7001655.
  • Iordanidou, D.; Zarganes-Tzitzikas, T.; Neochoritis, C. G.; Dömling, A.; Lykakis, I. N. Application of Silver Nanoparticles in the Multicomponent Reaction Domain: A Combined Catalytic Reduction Methodology to Efficiently Access Potential Hypertension or Inflammation Inhibitors. ACS Omega. 2018, 3, 16005–16013. DOI: 10.1021/acsomega.8b02749.
  • El-Chaghaby, G. A.; Ahmad, A. F. Biosynthesis of Silver Nanoparticles Using Pistacia lentiscus Leaves Extract and Investigation of Their Antimicrobial Effect. Orient. J. Chem. 2011, 27, 929–936.
  • Veerasamy, R.; Xin, T. Z.; Gunasagaran, S.; Xiang, T. F. W.; Yang, E. F. C.; Jeyakumar, N.; Dhanaraj, S. A. Biosynthesis of Silver Nanoparticles Using Mangosteen Leaf Extract and Evaluation of Their Antimicrobial Activities. J. Saudi Chem. Soc. 2011, 15, 113–120. DOI: 10.1016/j.jscs.2010.06.004.
  • Z. Fekri, L.; Nikpassand, M.; H. Pour, K. Green Aqueous Synthesis of Mono, Bis and Trisdihydropyridines Using Nano Fe3O4 under Ultrasound Irradiation. Curr. Org. Synth. 2015, 12, 76–79. DOI: 10.2174/1570179411666140806005614.
  • Shahi, A. M.; Nikpassand, M.; Fekri, L. Z. Acidic Ionic Liquid-Catalyzed Synthesis of Pyrano[4,3-b]pyran-5(4H)-ones using 4,4,4-Trifluoro-1-Phenylbutane-1,3-Dione as a Building Block. Curr. Org. Synth. 2020, 17, 648–653. DOI: 10.2174/1570179417666200520111536.
  • Zare Fekri, L.; Darya-Laal, A. R. NiFe2O4@SiO2@Amino Glucose Magnetic Nanoparticle as a Green, Effective and Magnetically Separable Catalyst for the Synthesis of Xanthene-Ones under Solvent. Polycyclic Aromat. Compd. 2020, 40, 1539–1556. DOI: 10.1080/10406638.2018.1559207.
  • Fekri, L. Z.; Pour, P. H.; Zeinali, S. Synthesis, Characterization and Application of Copper/Schiff-Base Complex Immobilized on KIT-6-NH2 Magnetic Nanoparticles for the Synthesis of Dihydropyridines. J. Organomet. Chem. 2020, 915, 121232. DOI: 10.1016/j.jorganchem.2020.121232.
  • Fekri, L. Z.; Nikpassand, M.; Shariati, S.; Aghazadeh, B.; Zarkeshvari, R.; Norouz Pour, N. Synthesis and Characterization of Amino Glucose-Functionalized Silica-Coated [Separable Catalyst for the Solvent-Free Synthesis of 2,4,5–Trisubstituted Imidazoles, Benzo[d]Imidazoles, Benzo[d] Oxazoles and Azo-Linked Benzo[d]Oxazoles. J. Organomet. Chem. 2018, 871, 60–73. DOI: 10.1016/j.jorganchem.2018.07.008.
  • Fekri, L. Z.; Nikpassand, M.; Khakshoor, S. N. Green, Effective and Chromatography Free Synthesis of Benzoimidazo[1,2-a]Pyrimidine and Tetrahydrobenzo [4,5]Imidazo [1,2-d]Quinazolin-1(2H)-One and Their Pyrazolyl Moiety Using Fe3O4@SiO2@l-Proline Reusable Catalyst in Aqueous Media. J. Organomet. Chem. 2019, 894, 18–27. DOI: 10.1016/j.jorganchem.2019.05.004.
  • Fekri, L. Z.; Zeinali, S. Copper/Schiff‐Base Complex Immobilized on Amine Functionalized Silica Mesoporous Magnetic Nanoparticles under Solvent‐Free Condition: A Facile and New Avenue for the Synthesis. Appl. Organomet. Chem. 2020, 34, e5629. DOI: 10.1002/aoc.5629.
  • Nikpassand, M.; Fekri, L. Z.; Gharib, M.; Marvi, O. Fe + 3-Montmorillonite K-10 as a Green and Reusable Catalyst for the Synthesis of New Generation of Dihydropyrimidinones. Lett. Org. Chem. 2012, 9, 745–748. DOI: 10.2174/157017812803901917.
  • Nikpassand, M.; Zare, L.; Mousavi, M. R. Comparative Study for the Aqueous Synthesis of New Generation of Diindolylmethanes Using L-Proline, K10 and Nano-Fe3O4 under Ultrasound Irradiation. Lett. Org. Chem. 2012, 9, 375–381. DOI: 10.2174/157017812801264719.
  • Zare, L.; Mahmoodi, N.; Yahyazadeh, A.; Mamaghani, M.; Tabatabaeian, K. An Efficient One‐Pot Synthesis of Pyridazinones and Phthalazinones Using HY‐Zeolite. J. Heterocycl. Chem. 2011, 48, 864–867. DOI: 10.1002/jhet.649.
  • Kang, T.-H.; Matsumoto, K.; Tohda, M.; Murakami, Y.; Takayama, H.; Kitajima, M.; Aimi, N.; Watanabe, H. Pteropodine and Isopteropodine Positively Modulate the Function of Rat Muscarinic M(1) and 5-HT(2) Receptors Expressed in Xenopus Oocyte. Eur. J. Pharmacol. 2002, 444, 39–45. DOI: 10.1016/s0014-2999(02)01608-4.
  • Ma, J.; Hecht, S. M. Javaniside, a Novel DNA Cleavage Agent from Alangium javanicum Having an Unusual Oxindole Skeleton. Chem. Commun. 2004, 10, 1190–1191. DOI: 10.1039/B402925A.
  • Tanaka, S.; Seguchi, K.; Itoh, K.; Sera, A. Formation of Tetracyclic Oxazolidinones from Cycloadducts of Benzylidene Ketones with 4-Phenyl-4,5-Dihydro-3H-1,2,4-Triazole-3,5-Dione (PTAD) by Base-Promoted Backbone Participation and Rearrangement. J. Chem. Soc. Perkin Trans. 1994, 1, 2335–2339. DOI: 10.1039/P19940002335.
  • Meehan, S.; Little, R. A. A New Synthesis of Diazenes (Azoalkanes) Using 4-(S,S-Dimethylsulfoximino)- 1,2,4-Triazoline-3,5-Dione. The Construction of Diazenes from Amino Nitrenes via Base-Induced Sulfoximine Cleavage. J. Org. Chem. 1997, 62, 3779–3781. DOI: 10.1021/jo970011j.
  • Deghati, P. Y. F.; Wanner, M. J.; Koomen, G. J. An Efficient Hetero Diels-Alder Approach to Imidazo[4,5-c]Pyridazines as Purine Analogues. Tetrahedron Lett. 1998, 39, 4561–4564. DOI: 10.1016/S0040-4039(98)00806-5.
  • Boldi, A. M.; Johnson, C. R.; Eissa, H. O. Solid-Phase Library Synthesis of Triazolopyridazines via [4 + 2] Cycloadditions Alternative Bases in the RNA World: The Prebiotic Synthesis of Urazole and Its Ribosides. Tetrahedron Lett. 1999, 40, 619–622. DOI: 10.1016/S0040-4039(98)02449-6.
  • Arroyo, Y.; Rodrı́guez, J. F.; Santos, M.; Sanz Tejedor, M. A.; Vaca, I.; Garcı́a Ruano, J. L. Asymmetric Synthesis of (3S,4R,5R)-4,5-Dihydroxy-3-Methyl-2,3,4,5-Tetrahydropyridazine: A Formal Synthesis of 1-Azagulofagomine Analogues. Tetrahedron Asymmetry 2004, 15, 1059–1063. DOI: 10.1016/j.tetasy.2004.01.037.
  • Masihpour, F.; Zare, A.; Merajoddin, M.; Hasaninejad, A. A Highly Effectual Protocol for the Production of Triazolo[1,2-a]Indazole-Triones and 2H-Indazolo[2,1-b]Phthalazine-Triones Using 1,3-Disulfonic Acid. J. Chem. Technol. Metallurgy 2019, 54, 23–29. DOI: 10.1016/j.tet.2010.11.029.
  • Sarhandi, S.; Zare Fekri, L.; Vessally, E. Ultrasound Assisted Chromatography-Free Synthesis of Triazolo [1,2-a]Indazole-Triones in the Presence of 1,4 Diazabicyclo[2.2.2] Octanium Diacetate as and Environmentally Friendly Green Media. Polycycl. Aromat. Compd. 2019, 1–11. DOI: 10.1080/10406638.2019.1632908.
  • Keshtibanian, M.; Mombeni Goodajdar, B. Magnetic Ionic Liquid Functionalized Sulfonic Acid: A Green and Efficient Catalyst for the One-Pot Synthesis of 1-Amidoalkyl-2-Naphtols. J. Appl. Chem. Res. 2020, 14, 58–69.
  • Arpanahi, F.; Mombeni Goodajdar, B. Fe-DTPMP: As a Novel and Efficient Organic –Inorganic Hybrid Catalyst for Solvent-Free Synthesis of Tri-Substituted Imidazole Derivatives. J. Inorg. Organomet. Polym. 2020, 30, 2572–2581. DOI: 10.1007/s10904-020-01530-9.
  • Mombani Godajdar, B.; Kiasat, A. R. One-Pot Synthesis of 2,4,5-Trisubstituted Imidazoles Catalyzed by Dicationic Magnetic Room Temperature Ionic Liquid. Iran. J. Catal. 2013, 3, 229–235.
  • Kazemi, Z.; Marahel, F.; Hamoule, T.; Mombini Godajdar, B. Removal of Ni (II) Ions from Aqueous Solutions Using Origanum majorana-Capped Silver Nanoparticles Synthesis Equilibrium. J. Phys. Theor. Chem. 2019, 16, 75–90.
  • Krishnaraj, C.; Jagan, E. G.; Jagan, S.; Rajasekar, P.; Selvakumar, P. T.; Kalaichelvan, N. Synthesis of Silver Nanoparticles Using Acalypha indica Leaf Extracts and Its Antibacterial Activity against Water Borne Pathogens. Colloids Surf. B Biointerfaces 2010, 76, 50–56. DOI: 10.1016/j.colsurfb.2009.10.008.
  • Chen, Y. H.; Yeh, C. S. A New Approach for the Formation of Alloy Nanoparticles: Laser Synthesis of Gold–Silver Alloy from Gold–Silver Colloidal Mixtures. Chem. Commun. 2001, 4, 371–372. DOI: 10.1039/b009854j.
  • Singh, P. K.; Bhardwaj, K.; Dubey, P.; Prabhune, A. UV-Assisted Size Sampling and Antibacterial Screening of Lantana Camara Leaf Extract Synthesized Silver Nanoparticles. RSC Adv. 2015, 5, 24513–24520. DOI: 10.1039/C4RA17233G.
  • Karimi, M. A.; Mozaheb, M. A.; Hate-Mehrjardi, A.; Tavallali, H.; Attaran, A. M.; Deilamy-Rad, G. Green Synthesis of Silver Nanoparticles Using Pollen Extract of Rose Ower and Their Antibacterial Activity. Sci. Iran. 2015, 22, 2736–2744.
  • Hassankhani, A.; Mosaddegh, E.; Ebrahimipour, S. Y. Tungstosilicic Acid as an Efficient Catalyst for the One-Pot Multicomponent Synthesis of Triazolo[1,2-a]Indazole-1,3,8-Trione Derivatives under Solvent-Free Conditions. Arab. J. Chem. 2016, 9, 5936–5939. DOI: 10.1016/j.arabjc.2011.10.003.
  • Chandam, D. R.; Mulik, A. G.; Patil, P. P.; Jagdale, S. D.; Patil, D. R.; Deshmukh, M. B. (±)-Camphor-10-Sulfonic Acid Catalyzed Atom Efficient and Green Synthesis of Triazolo[1,2-a]Indazole-Triones and Spiro Triazolo[1,2-a]Indazole-Tetraones. Res. Chem. Intermed. 2015, 41, 761–771. DOI: 10.1007/s11164-013-1226-9.
  • (a) Hasaninejad, A.; Zare, A.; Shekouhy, M. Highly Efficient Synthesis of Triazolo [1, 2-a] Indazole-Triones and Novel Spiro Triazolo [1, 2-a] Indazole-Tetraones under Solvent-Free Conditions. Tetrahedron 2011, 67, 390–400. DOI: 10.1016/j.tet.2010.11.029. (b) Khazaei, A.; Zolfigol, M. A.; Faal-Rastegar, T.; Chehardol, G.; Mallakpour, S. Melamine Trisulfonic Acid (MTSA) as an Efficient Catalyst for the Synthesis of Triazolo[1,2-a]Indazole-Triones and Some 2H-Indazolo[2,1-b]phthalazine-trione. Iran. J. Catal. 2013, 3, 211–220. (c) Bazgir, A.; Seyyedhamzeh, M.; Yasaei, Z.; Mirzaei, P. A Novel Three-Component Method for the Synthesis of Triazolo[1,2-a]Indazole-Triones, Tetrahedron Lett. 2007, 48, 8790–8794. DOI: 10.1016/j.tetlet.2007.10.084

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.