85
Views
1
CrossRef citations to date
0
Altmetric
Articles

Diiron carbonyl complexes containing bridging 1,3-bis(diphenylphosphino)propane or monosubstituted tris(3-fluorophenyl)phosphine: synthesis, characterization, X-ray crystallography, and electrochemistry

, , , , , & show all
Pages 790-796 | Received 14 Jan 2021, Accepted 07 Jun 2021, Published online: 21 Jul 2021

References

  • Tard, C.; Pickett, C. J. Structural and Functional Analogues of the Active Sites of the [Fe]-, [NiFe]-, and [FeFe]-Hydrogenases. Chem. Rev. 2009, 109, 2245–2274. DOI: 10.1021/cr800542q.
  • Lubitz, W.; Ogata, H.; Rüdiger, O.; Reijerse, E. Hydrogenases. Chem. Rev. 2014, 114, 4081–4148. DOI: 10.1021/cr4005814.
  • Li, Y.; Rauchfuss, T. B. Synthesis of Diiron(I) Dithiolato Carbonyl Complexes. Chem. Rev. 2016, 116, 7043–7077. DOI: 10.1021/acs.chemrev.5b00669.
  • Cammack, R. Hydrogenase Sophistication. Nature 1999, 397, 214–215. DOI: 10.1038/16601.
  • Peters, J. W.; Lanzilotta, W. N.; Lemon, B. J.; Seefeldt, L. C. X-Ray Crystal Structure of the Fe-Only Hydrogenase (CpI) from Clostridium pasteurianum to 1.8 Angstrom Resolution. Science 1998, 282, 1853–1857. DOI: 10.1126/science.282.5395.1853.
  • Nicolet, Y.; Piras, C.; Legrand, P.; Hatchikian, C. E.; Fontecilla-Camps, J. C. Desulfovibrio Desulfuricans Iron Hydrogenase: The Structure Shows Unusual Coordination to an Active Site Fe Binuclear Center. Structure 1999, 7, 13–23. DOI: 10.1016/S0969-2126(99)80005-7.
  • Lyon, E. J.; Georgakaki, I. P.; Reibenspies, J. H.; Darensbourg, M. Y. Carbon Monoxide and Cyanide Ligands in a Classical Organometallic Complex Model for Fe-Only Hydrogenase. Angew. Chem. Int. Ed. 1999, 38, 3178–3180. DOI: 10.1002/(SICI)1521-3773(19991102)38:21<3178::AID-ANIE3178>3.0.CO;2-4.
  • Lyon, E. J.; Georgakaki, I. P.; Reibenspies, J. H.; Darensbourg, M. Y. Coordination Sphere Flexibility of Active-Site Models for Fe-Only Hydrogenase: Studies in Intra- and Intermolecular Diatomic Ligand Exchange. J. Am. Chem. Soc. 2001, 123, 3268–3278. DOI: 10.1021/ja003147z.
  • Li, H.; Rauchfuss, T. B. Iron Carbonyl Sulfides, Formaldehyde, and Amines Condense to Give the Proposed Azadithiolate Cofactor of the Fe-Only Hydrogenases. J. Am. Chem. Soc. 2002, 124, 726–727. DOI: 10.1021/ja016964n.
  • Lawrence, J. D.; Li, H.; Rauchfuss, T. B.; Bénard, M.; Rohmer, M. M. Diiron Azadithiolates as Models for the Iron-Only Hydrogenase Active Site: Synthesis, Structure, and Stereoelectronics. Angew. Chem. Int. Ed. 2001, 40, 1768–1771. DOI: 10.1002/1521-3773(20010504)40:9<1768::AID-ANIE17680>3.0.CO;2-E.
  • Mejia-Rodriguez, R.; Chong, D.; Reibenspies, J. H.; Soriaga, M. P.; Darensbourg, M. Y. The Hydrophilic Phosphatriazaadamantane Ligand in the Development of H2 Production Electrocatalysts: Iron Hydrogenase Model Complexes. J. Am. Chem. Soc. 2004, 126, 12004–12014. DOI: 10.1021/ja039394v.
  • Le Cloirec, A.; Best, S. P.; Borg, S.; Davies, S. C.; Evans, D. J.; Hughes, D. L.; Pickett, C. J. A Di-Iron Dithiolate Possessing Structural Elements of the Carbonyl/Cyanide Sub-Site of the H-Centre of Fe-Only Hydrogenase. Chem. Commun. 1999, 2285–2286. DOI: 10.1039/a906391i.
  • Gloaguen, F.; Lawrence, J. D.; Schmidt, M.; Wilson, S. R.; Rauchfuss, T. B. Synthetic and Structural Studies on [Fe2(SR)2(CN)x(CO)6-x](x-) as active site models for Fe-only hydrogenases. J. Am. Chem. Soc. 2001, 123, 12518–12527. DOI: 10.1021/ja016071v.
  • Feng, Y. N.; Xu, F. F.; Chen, R. P.; Wen, N.; Li, Z. H.; Du, S. W. Preparation, Structures and Electrochemical Property of Diiron Dithiolate Complexes with Hydrophilic N-Donor Ligands. J. Organomet. Chem. 2012, 717, 211–217. DOI: 10.1016/j.jorganchem.2012.07.015.
  • Capon, J. F.; Hassnaoui, S. E.; Gloaguen, F.; Schollhammer, P.; Talarmin, J. N. Heterocyclic Carbene Ligands as Cyanide Mimics in Diiron Models of the All-Iron Hydrogenase Active Site. Organometallics 2005, 24, 2020–2022. DOI: 10.1021/om049132h.
  • Adam, F. I.; Hogarth, G.; Kabir, S. E.; Richards, I. Models of the Iron-Only Hydrogenase: Synthesis and Protonation of Bridge and Chelate Complexes [Fe2(CO)4{Ph2P(CH2)nPPh2}(μ-Pdt)] (n = 2‒4) ‒ Evidence for a Terminal Hydride Intermediate. C. R. Chimie 2008, 11, 890–905. DOI: 10.1016/j.crci.2008.03.003.
  • Ghosh, S.; Rahaman, A.; Orton, G.; Gregori, G.; Bernat, M.; Kulsume, U.; Hollingsworth, N.; Holt, K. B.; Kabir, S. E.; Hogarth, G. Synthesis, Molecular Structures and Electrochemical Investigations of [FeFe]-Hydrogenase Biomimics [Fe2(CO)6-n(EPh3)n(μ-Edt)] (E = P, as, Sb; n = 1, 2. ). Eur. J. Inorg. Chem. 2019, 2019, 4506–4515. DOI: 10.1002/ejic.201900891.
  • Winter, A.; Zsolnai, L.; Huttner, G. Dinuclear and Trinuclear Carbonyliron Complexes Containing 1,2- and 1,3-Dithiolato Bridging Ligands. Z. Naturforsch. 1982, 37b, 1430–1636. DOI: 10.1002/chin.198308278.
  • APEX2, version 2009.7-0; Bruker AXS, Inc.: Madison, WI, 2007.
  • Sheldrick, G. M. SADABS: Program for Absorption Correction of Area Detector Frames; Bruker AXS Inc.: Madison, WI, 2001.
  • Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Crystallogr. 2009, 42, 339–341. DOI: 10.1107/S0021889808042726.
  • Sheldrick, G. M. A Short History of SHELX. Acta Crystallogr. A 2008, 64, 112–122. DOI: 10.1107/S0108767307043930.
  • Lian, M.; He, J.; Yu, X. Y.; Mu, C.; Liu, X. F.; Li, Y. L.; Jiang, Z. Q. Diiron Ethanedithiolate Complexes with Acetate Ester: Synthesis, Characterization and Electrochemical Properties. J. Organomet. Chem. 2018, 870, 90–96. DOI: 10.1016/j.jorganchem.2018.06.023.
  • Chen, F. Y.; He, J.; Yu, X. Y.; Wang, Z.; Mu, C.; Liu, X. F.; Li, Y. L.; Jiang, Z. Q.; Wu, H. K. Electrocatalytic Properties of Diiron Ethanedithiolate Complexes Containing Benzoate Ester. Appl. Organometal. Chem. 2018, 32, e4549. DOI: 10.1002/aoc.4549.
  • Yan, L.; Hu, K.; Liu, X. F.; Li, Y. L.; Liu, X. H.; Jiang, Z. Q. Diiron Ethane-1,2-Dithiolate Complexes with 1,2,3-Thiadiazole Moiety: Synthesis, X-Ray Crystal Structures. Electrochem. Fungicid. Activ. Appl. Organomet. Chem. 2021, 35, e6084. DOI: 10.1002/aoc.6084.
  • Ghosh, S.; Hogarth, G.; Hollingsworth, N.; Holt, K. B.; Richard, I.; Richmond, M. G.; Sanchez, B. E.; Unwin, D. Models of the Iron-Only Hydrogenase: A Comparison of Chelate and Bridge Isomers of Fe2(CO)4{Ph2PN(R)PPh2}(μ-Pdt) as Proton-Reduction Catalysts. Dalton Trans. 2013, 42, 6775–6792. DOI: 10.1039/c3dt50147g.
  • Ghosh, S.; Sanchez, B. E.; Richards, I.; Haque, M. N.; Holt, K. B.; Richmond, M. G.; Hogarth, G. Biomimetics of the [FeFe]-Hydrogenase Enzyme: Identification of Kinetically Favoured Apical-Basal [Fe2(CO)4(μ-H){k2-Ph2PC(Me2)PPh2}(μ-Pdt)]+ as a Proton-Reduction Catalyst. J. Organomet. Chem. 2016, 812, 247–258. DOI: 10.1016/j.jorganchem.2015.09.036.
  • Zhao, P. H.; Hu, M. Y.; Li, J. R.; Ma, Z. Y.; Wang, Y. Z.; He, J.; Li, Y. L.; Liu, X. F. Influence of Dithiolate Bridges on the Structures and Electrocatalytic Performance of Small Bite-Angle PNP-Chelated Diiron Complexes Fe2(μ-Xdt)(CO)4{κ2‑(Ph2P)2NR} Related to [FeFe]-Hydrogenases. Organometallics 2019, 38, 385–394. DOI: 10.1021/acs.organomet.8b00759.
  • Zhao, P. H.; Li, J. R.; Gu, X. L.; Jing, X. B.; Liu, X. F. Diiron and Trinuclear NiFe2 Dithiolate Complexes Chelating by PCNCP Ligands: Synthetic Models of [FeFe]- and [NiFe]-Hydrogenases. J. Inorg. Biochem. 2020, 210, 111126 DOI: 10.1016/j.jinorgbio.2020.111126.
  • Li, Q. L.; Lü, S.; Zhang, R. F.; Zhao, D.; Ma, C. L. Substitution Reactions of Diiron Diselenolato Complex with Bisphosphine Ligands. Polyhedron 2019, 160, 255–260. DOI: 10.1016/j.poly.2018.12.044.
  • Liu, X.-F.; Jiang, Z.-Q.; Jia, Z.-J. Characterization and Crystal Structures of Tetrairon Ethanedithiolate Complexes Containing Bridging Bidentate Phosphine Ligands. Polyhedron 2012, 33, 166–170. DOI: 10.1016/j.poly.2011.11.032.
  • Gao, W.; Ekström, J.; Liu, J.; Chen, C.; Eriksson, L.; Weng, L.; Åkermark, B.; Sun, L. Binuclear Iron-Sulfur Complexes with Bidentate Phosphine Ligands as Active Site Models of Fe-Hydrogenase and Their Catalytic Proton Reduction. Inorg. Chem. 2007, 46, 1981–1991. DOI: 10.1021/ic0610278.
  • Li, P.; Wang, M.; He, C.; Li, G.; Liu, X.; Chen, C.; Åkermark, B.; Sun, L. Influence of Tertiary Phosphanes on the Coordination Configurations and Electrochemical Properties of Iron Hydrogenase Model Complexes: Crystal Structures of [(μ-S2C3H6)Fe2(CO)6–nLn] (L = PMe2Ph, n = 1, 2; PPh3, P(OEt)3, n = 1). Eur. J. Inorg. Chem. 2005, 2005, 2506–2513. DOI: 10.1002/ejic.200400947.
  • Chen, F. Y.; He, J.; Mu, C.; Liu, X. F.; Li, Y. L.; Jiang, Z. Q.; Wu, H. K. Synthesis and Characterization of Five Diiron Ethanedithiolate Complexes with Acetate Group and Phosphine Ligands. Polyhedron 2019, 160, 74–82. DOI: 10.1016/j.poly.2018.12.027.
  • Ortega-Alfaro, M. C.; Hernández, N.; Cerna, I.; López-Cortés, J. G.; Gómez, E.; Toscano, R. A.; Alvarez-Toledano, C. Novel Dinuclear Iron(0) Complexes from α,β-Unsaturated Ketones β-Positioned with Sulfide and Sulfoxide Groups. J. Organomet. Chem. 2004, 689, 885–893. DOI: 10.1016/j.jorganchem.2003.12.015.
  • Wang, Z.; He, J.; Lü, S.; Jiang, W. D.; Wu, Y.; Jiang, J.; Xie, Y.; Mu, C.; Li, A.; Li, Y. L.; Li, Q. L. Monophoisphine‐Substituted Diiron Azadithiolate Complexes: New Syntheses. Charact. Electrochem. Prop. Appl. Organomet. Chem. 2019, 33, e5184. DOI: 10.1002/aoc.5184.
  • He, J.; Deng, C.-L.; Li, Y.; Li, Y.-L.; Wu, Y.; Zou, L.-K.; Mu, C.; Luo, Q.; Xie, B.; Wei, J.; et al. A New Route to the Synthesis of Phosphine-Substituted Diiron Aza- and Oxadithiolate Complexes. Organometallics 2017, 36, 1322–1330. DOI: 10.1021/acs.organomet.7b00040.
  • Lu, D. T.; He, J.; Yu, X. Y.; Liu, X. F.; Li, Y. L.; Jiang, Z. Q. Diiron Ethanedithiolate Complexes with Pendant Ferrocene: Synthesis, Characterization and Electrochemistry. Polyhedron 2018, 149, 1–6. DOI: 10.1016/j.poly.2018.04.015.
  • Chong, D.; Georgakaki, I. P.; Mejia-Rodriguez, R.; Sanabria-Chinchilla, J.; Soriaga, M. P.; Darensbourg, M. Y. Electrocatalysis of Hydrogen Production by Active Site Analogues of the Iron Hydrogenase Enzyme: Structure/Function Relationships. Dalton Trans. 2003, 4158–4163. DOI: 10.1039/B304283A.
  • Lin, H. M.; Li, J. R.; Mu, C.; Li, A.; Liu, X. F.; Zhao, P. H.; Li, Y. L.; Jiang, Z. Q.; Wu, H. K. Synthesis, Characterization, and Electrochemistry of Monophosphine‐Containing Diiron Propane‐1,2‐Dithiolate Complexes Related to the Active Site of [FeFe]. Hydrogen. Appl. Organomet. Chem. 2019, 33, e5196. DOI: 10.1002/aoc.5196.
  • Gloaguen, F.; Lawrence, J. D.; Rauchfuss, T. B. Biomimetic Hydrogen Evolution Catalyzed by an Iron Carbonyl Thiolate. J. Am. Chem. Soc. 2001, 123, 9476–9477. DOI: 10.1021/ja016516f.
  • Zaffaroni, R.; Rauchfuss, T. B.; Gray, D. L.; De Gioia, L.; Zampella, G. Terminal vs Bridging Hydrides of Diiron Dithiolates: Protonation of Fe2(dithiolate)(CO)2(PMe3)4 . J. Am. Chem. Soc. 2012, 134, 19260‒19269. DOI: 10.1021/ja3094394.
  • Lü, S.; Zhang, R. F.; Li, Q. L.; He, J.; Li, Y. L. Synthesis, Characterization and Electrochemical Properties of Two Isomers of Diiron Diselenolato Complexes and a New Pathway to the μ4-Se Twin Cluster. J. Organomet. Chem. 2018, 873, 66–72. DOI: 10.1016/j.jorganchem.2018.08.003.
  • Li, Q. L.; Zhang, R. F.; Ma, C. L.; Lü, S.; Mu, C.; Li, Y. L. Synthesis, Characterization, and Some Electrocatalytic Properties of Heteromultinuclear FeI/RuII Clusters. Appl. Organomet. Chem. 2020, 34, e5461. DOI: 10.1002/aoc.5461.
  • Lü, S.; Huang, H. L.; Zhang, R. F.; Ma, C. L.; Li, Q. L.; He, J.; Yang, J.; Li, T.; Li, Y. L. Phosphine-Substituted Fe-Te Clusters Related to the Active Site of [FeFe]-H2ases. Inorg. Chem. Front. 2020, 7, 2352–2361. DOI: 10.1039/D0QI00276C.
  • Zhao, P. H.; Hu, M. Y.; Li, J. R.; Wang, Y. Z.; Lu, B. P.; Han, H. F.; Liu, X. F. Impacts of Coordination Modes (Chelate versus Bridge) of PNP-Diphosphine Ligands on the Redox and Electrocatalytic Properties of Diiron Oxadithiolate Complexes for Proton Reduction. Electrochim. Acta 2020, 353, 136615. DOI: 10.1016/j.electacta.2020.136615.
  • Lin, H. M.; Li, A.; Xiao, Q. M.; Liu, X. F.; Li, Y. L.; Liu, X. H.; Jiang, Z. Q. Synthesis, Characterization and Electrochemistry of 1,2-Bis(Diphenylphosphino)benzene-Chelated Diiron Ethane-1,2-Dithiolate Tetracarbonyl Complex. Chin. J. Struct. Chem. 2020, 39, 927‒932. DOI: 10.14102/j.cnki.0254-5861.2011-2502.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.