347
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Green synthesis of copper oxide nanoparticles using Euphorbia hirta leaves extract and its biological applications

, , &
Pages 809-818 | Received 08 Feb 2021, Accepted 07 Jun 2021, Published online: 23 Jul 2021

References

  • Elumalai, E. K.; Prasad, T. N. V. K. V.; Hemachandran, J.; Therasa, S. V.; Thirumalai, T.; David, E. Extracellular Synthesis of Silver Nanoparticles Using Leaves of Euphorbia hirta and Their Antibacterial Activities. J. Pharm Sci. Res. 2010, 2, 549–554.
  • Devi, H. S.; Singh, T. D. Synthesis of Copper Oxide Nanoparticles by a Novel Method and its Application in the Degradation of Methyl Orange. Adv. Electron. Electr. Eng. 2014, 4, 83–88.
  • Mackenzie, J. D.; Bescher, E. P. Chemical Routes in the Synthesis of Nanomaterials Using the Sol–Gel Process. Acc. Chem. Res. 2007, 40, 810–818. DOI: 10.1021/ar7000149.
  • Shui, A.; Zhu, W.; Xu, L.; Qin, D.; Wang, Y. Green Sonochemical Synthesis of Cupric and Cuprous Oxides Nanoparticles and Their Optical Properties. Ceram. Int. 2013, 39, 8715–8722. DOI: 10.1016/j.ceramint.2013.04.055..
  • Mustafa, G.; Tahir, H.; Sultan, M.; Akhtar, N. Synthesis and Characterization of Cupric Oxide (CuO) Nanoparticles and Their Application for the Removal of Dyes. Afr. J. Biotechnol. 2013, 12, 6650–6660. DOI: 10.5897/AJB2013.13058..
  • Azizi, S.; Ahmad, M. B.; Namvar, F.; Mohamad, R. Green Biosynthesis and Characterization of Zinc Oxide Nanoparticles Using Brown Marine Macroalga Sargassum muticum Aqueous Extract. Mater. Lett. 2014, 116, 275–277. DOI: 10.1016/j.matlet.2013.11.038..
  • Li, X.; Liang, J.; Kishi, N.; Soga, T. Synthesis of Cupric Oxide Nanowires on Spherical Surface by Thermal Oxidation Method. Mater. Lett. 2013, 96, 192–194. DOI: 10.1016/j.matlet.2013.01.056.
  • Sivaraj, R.; Rahman, P. K.; Rajiv, P.; Narendhran, S.; Venckatesh, R. Biosynthesis and Characterization of Acalypha Indica Mediated Copper Oxide Nanoparticles and Evaluation of its Antimicrobial and Anticancer Activity. Spectrochims Acta A Mol. Biomol. Spectrosc. 2014, 129, 255–258. DOI: 10.1016/j.saa.2014.03.027..
  • Sharma, J. K.; Akhtar, M. S.; Ameen, S.; Srivastava, P.; Singh, G. Green Synthesis of CuO Nanoparticles with Leaf Extract of Calotropis gigantea and its Dye-Sensitized Solar Cells Applications. J. Alloys Compd. 2015, 632, 321–325. DOI: 10.1016/j.jallcom.2015.01.172..
  • Ravikumar, B. S.; Nagabhushana, H.; Sunitha, D. V.; Sharma, S. C.; Nagabhushana, B. M.; Shivakumara, C. Plant Latex Mediated Green Synthesis of ZnAl2O4: Dy3. + (1–9Mol%) Nanophosphor for White Light Generation. J. Alloys Compd. 2014, 585, 561–571. DOI: 10.1016/j.jallcom.2013.09.080.
  • Nethravathi, P. C.; Kumar, M. P.; Suresh, D.; Lingaraju, K.; Rajanaika, H.; Nagabhushana, H.; Sharma, S. C. Tinospora Cordifolia Mediated Facile Green Synthesis of Cupric Oxide Nanoparticles and Their Photocatalytic, Antioxidant and Antibacterial Properties. Mater. Sci. Semicond. Process. 2015, 33, 81–88. DOI: 10.1016/j.mssp.2015.01.034..
  • Kumar, S.; Malhotra, R.; Kuma, D. Euphorbia hirta: Its Chemistry, Traditional and Medicinal Uses, and Pharmacological Activities. Pharmacogn. Rev. 2010, 4, 58–61. DOI: 10.4103/0973-7847.65327..
  • Johnson, P. B.; Abdurahman, E. M.; Tiam, E. A.; Abdu-Aguye, I.; Hussaini, I. M.; Abdu-Aguye, I.; Hussaini, I. M. Euphorbia hirta Leaf Extracts Increase Urine Output and Electrolytes in Rats. J. Ethnopharmacol. 1999, 65, 63–69. DOI: 10.1016/S0378-8741(98)00143-3.
  • Kolekar, R.; Bhade, S.; Kumar, R.; Reddy, P.; Singh, R.; Pradeepkumar, K. Biosynthesis of Copper Nanoparticles Using Aqueous Extract of Eucalyptus sp. Plant Leaves. Curr. Sci. 2015, 109, 255. DOI: 10.18520/CS/V109/I2/255-257..
  • Amutha, C.; Thanikaikarasan, S.; Ramadas, V.; Bahadur, S. A.; Natarajan, B.; Kalyani, R. Synthesis, Characterization and Antibacterial Efficiency of ZnO Nanoparticles Using Rice as Soft Bio-Template. Optik. 2016, 127, 4281–4286. DOI: 10.1016/j.ijleo.2016.01.124..
  • Honary, S.; Barabadi, H.; Gharaei-Fathabad, E.; Naghibi, F. Green Synthesis of Copper Oxide Nanoparticles Using Penicillium aurantiogriseum, Penicillium citrinum and Penicillium waksmanii. Dig. J. Nanomater. Bios. 2012, 7, 999–1005.
  • Gunalan, S.; Sivaraj, R.; Venckatesh, R. Aloe Barbadensis Miller Mediated Green Synthesis of Mono-Disperse Copper Oxide Nanoparticles: Optical Properties. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2012, 97, 1140–1144. DOI: 10.1016/j.saa.2012.07.096..
  • Saif, S.; Tahir, A.; Asim, T.; Chen, Y. Plant Mediated Green Synthesis of CuO Nanoparticles: Comparison of Toxicity of Engineered and Plant Mediated CuO Nanoparticles Towards Daphnia magna. Nanomaterials 2016, 6, 205. DOI: 10.3390/nano6110205..
  • Zhang, Q.; Li, Y. A. N.; Xu, D.; Gu, Z. Preparation of Silver Nanowire Arrays in Anodic Aluminum Oxide Templates. J. Mater. Sci. Lett. 2001, 20, 925–927. DOI: 10.1088/0957-4484/17/2/03.
  • Arya, V.; Yadav, J. Á. Comparative Assessment of Relative Antioxidant Activity of Sequential Leaf Extracts of Cassia occidentalis and C. tora. Pharmacology Online 2011, 1, 529–543. DOI: 10.1016/j.fitote.2009.09.008.8.
  • Jabbour, H. N.; Sales, K. J.; Catalano, R. D.; Norman, J. E. Inflammatory Pathways in Female Reproductive Health and Disease. Reproduction 2009, 138, 903–919. DOI: 10.1530/REP-09-0247.
  • Galdiero, S.; Falanga, A.; Vitiello, M.; Cantisani, M.; Marra, V.; Galdiero, M. Silver Nanoparticles as Potential Antiviral Agents. Molecules 2011, 16, 8894–8918. DOI: 10.3390/molecules16108894.
  • Ameta, A.; Ameta, R.; Ahuja, M. Photocatalytic Degradation of Methylene Blue Over Ferric Tungstate. Sci. Rev. Chem. Commun. 2013, 3, 172–180. DOI: 10.1007/s12613-018-1567-x..
  • Munir, M.; Nazar, M. F.; Zafar, M. N.; Zubair, M.; Ashfaq, M.; Hosseini-Bandegharaei, A.; Khan, S. U.-D.; Ahmad, A. Effective Adsorptive Removal of Methylene Blue from Water by Didodecyldimethylammonium Bromide-Modified Brown Clay. ACS Omega. 2020, 5, 16711–16721. DOI: 10.1021/acsomega.0c01613.
  • Rani, S.; Aggarwal, M.; Kumar, M.; Sharma, S.; Kumar, D. Removal of Methylene Blue and Rhodamine B from Water by Zirconium Oxide/Graphene. Water Sci. 2016, 30, 51–60. DOI: 10.1016/j.wsj.2016.04.001.
  • Karthik, R.; Muthezhilan, R.; Jaffar Hussain, A.; Ramalingam, K.; Rekha, V. Effective Removal of Methylene Blue Dye from Water Using Three Different Low-Cost Adsorbents. Desalin. Water Treat. 2016, 57, 10626–10631. DOI: 10.1080/19443994.2015.1039598.
  • Bayomie, O. S.; Kandeel, H.; Shoeib, T.; Yang, H.; Youssef, N.; El-Sayed, M. M. Novel Approach for Effective Removal of Methylene Blue Dye from Water Using Fava Bean Peel Waste. Sci. Rep. 2020, 10, 1–10. DOI: 10.1038/s41598-020-64727-5..
  • Ahmad, I.; Beg, A. Z. Antimicrobial and Phytochemical Studies on 45 Indian Medicinal Plants against Multi-Drug Resistant Human Pathogens. J. Ethnopharmacol. 2001, 74, 113–123. DOI: 10.1016/S0378-8741(00)00335-4.
  • Azam, A.; Ahmed, A. S.; Oves, M.; Khan, M. S.; Habib, S. S.; Memic, A. Antimicrobial Activity of Metal Oxide Nanoparticles Against Gram-Positive and Gram-Negative Bacteria: A Comparative Study. Int. J. Nanomed. 2012, 7, 6003–6009. DOI: 10.2147/IJN.S35347.
  • Kikuzaki, H.; Nakatani, N. Antioxidant Effects of Some Ginger Constituents. J. Food Sci. 1993, 58, 1407–1410. DOI: 10.1111/j.1365-2621.1993.tb06194.x..
  • Ruch, R. J.; Cheng, S. J.; Klaunig, J. E. Prevention of Cytotoxicity and Inhibition of Intercellular Communication by Antioxidant Catechins Isolated from Chinese Green Tea. Carcinogenesis 1989, 10, 1003–1008. DOI: 10.1093/carcin/10.6.1003.
  • Yen, G. C.; Chen, H. Y. Antioxidant Activity of Various Tea Extracts in Relation to Their Antimutagenicity. J. Agric. Food Chem. 1995, 43, 27–32. DOI: 10.1021/jf00049a007.
  • Oyaizu, M. Studies on Products of Browning Reaction Antioxidative Activities of Products of Browning Reaction Prepared from Glucosamine. Jpn. J. Nutrdiet. 1986, 44, 307–315. DOI: 10.5264/eiyogakuzashi.44.307.
  • Juvekar, A.; Sakat, S.; Wankhede, S.; Juvekar, M.; Gambhire, M. Evaluation of Antioxidant and Anti-Inflammatory Activity of Methanol Extract of Oxalis corniculata. Planta Med. 2009, 75, 178. DOI: 10.1055/s-0029-1234983.
  • Shinde, U. A.; Phadke, A. S.; Nair, A. M.; Mungantiwar, A. A.; Dikshit, V. J.; Saraf, M. N. Stabilizing Activity—A Possible Mechanism of Action for the Anti-Inflammatory Activity of Cedrus deodara Wood Oil. Fitoterapia 1999, 70, 251–257. DOI: 10.1016/S0367-326X(99)00030-1.
  • Oyedapo, O. O.; Famurewa, A. J. Antiprotease and Membrane Stabilizing Activities of Extracts of Fagara zanthoxyloides, Olax subscorpioides and Tetrapleura tetraptera. Int. J. Pharmacogn. 1995, 33, 65–69. DOI: 10.3109/13880209509088150.
  • Kouhkan, M.; Ahangar, P.; Babaganjeh, L. A.; Allahyari-Devin, M. Biosynthesis of Copper Oxide Nanoparticles Using Lactobacillus casei Subsp. casei and its Anticancer and Antibacterial Activities. CNANO. 2020, 16, 101–111. DOI: 10.2174/1573413715666190318155801.
  • Badola, G.; Negi, D. S. Antibacterial and Photocatalytic Activity of Verbascum Thapsus Leaves Extract Mediated Synthesized Silver Nanoparticles. Int. J. Herb. Med. 2017, 5, 04–08.
  • Khan, A. U.; Yuan, Q.; Wei, Y.; Khan, Z. U. H.; Tahir, K.; Khan, S. U.; Ahmad, A.; Khan, S.; Nazir, S.; Khan, F. U. Ultra-Efficient Photocatalytic Deprivation of Methylene Blue and Biological Activities of Biogenic Silver Nanoparticles. J. Photochem. Photobiol. B. 2016, 159, 49–58. DOI: 10.1016/j.jphotobiol.2016.03.017.
  • Liyanage, C. S.; De Silva, S. N. T.; Fernando, C. A. N. Green Synthesis, Characterization and Antibacterial Activity of Cuprous Oxide Nanoparticles Produced from Aloe Vera Leaf Extract and Benedict’s Solution. 2018.
  • Akintelu, S. A.; Folorunso, A. S.; Folorunso, F. A.; Oyebamiji, A. K. Green Synthesis of Copper Oxide Nanoparticles for Biomedical Application and Environmental Remediation. Heliyon 2020, 6, e04508. DOI: 10.1016/j.heliyon.2020.e04508.
  • Prasad, P. R.; Kanchi, S.; Naidoo, E. B. In-Vitro Evaluation of Copper Nanoparticles Cytotoxicity on Prostate Cancer Cell Lines and Their Antioxidant, Sensing and Catalytic Activity: One-Pot Green Approach. J. Photochem. Photobiol. B. 2016, 161, 375–382. DOI: 10.1016/j.jphotobiol.2016.06.008.
  • Naika, H. R.; Lingaraju, K.; Manjunath, K.; Kumar, D.; Nagaraju, G.; Suresh, D.; Nagabhushana, H. Green Synthesis of CuO Nanoparticles Using Gloriosa superba L. Extract and Their Antibacterial Activity. J. Taibah Univ. Sci. 2015, 9, 7–12. DOI: 10.1016/j.jtusci.2014.04.006.
  • Syed, B.; Yashavantha Rao, H. C.; Nagendra-Prasad, M. N.; Prasad, A.; Harini, B. P.; Azmath, P.; Rakshith, D.; Satish, S. Biomimetic Synthesis of Silver Nanoparticles Using Endosymbiotic Bacterium Inhabiting Euphorbia hirta L. and Their Bactericidal Potential. Scientifica (Cairo) 2016, 2016, 9020239. DOI: 10.1155/2016/9020239.
  • Cullity, B. D.; Smoluchowski, R. Elements of X-Ray Diffraction. Phys. Today 1957, 10, 50–50. DOI: 10.1063/1.3060306.
  • Ahmad, W.; Kalra, D. Green Synthesis, Characterization and Anti Microbial Activities of ZnO Nanoparticles Using Euphorbia hirta Leaf Extract. Journal of King Saud Univ. Sci. 2020, 32, 2358–2364. DOI: 10.1016/j.jksus.2020.03.014.
  • Nasrollahzadeh, M.; Sajadi, S. M.; Maham, M. Tamarix Gallica Leaf Extract Mediated Novel Route for Green Synthesis of CuO Nanoparticles and Their Application for N-Arylation of Nitrogen-Containing Heterocycles Under Ligand-Free Conditions. RSC Adv. 2015, 5, 40628–40635. DOI: 10.1039/C5RA04012D.
  • Marquis, G.; Ramasamy, B.; Banwarilal, S.; Munusamy, A. P. Evaluation of Antibacterial Activity of Plant Mediated CaO Nanoparticles Using Cissus quadrangularis Extract. J. Photochem. Photobiol. B. 2016, 155, 28–33. DOI: 10.1016/j.jphotobiol.2015.12.013.
  • Mata, R.; Nakkala, J. R.; Sadras, S. R. Biogenic Silver Nanoparticles from Abutilon indicum: Their Antioxidant, Antibacterial and Cytotoxic Effects In Vitro. Colloids Surf. B. Biointerfaces. 2015, 128, 276–286. DOI: 10.1016/j.colsurfb.2015.01.052.
  • Subramanian, R.; Subbramaniyan, P.; Raj, V. Antioxidant Activity of the Stem Bark of Shorea roxburghii and its Silver Reducing Power. Springerplus. 2013, 2, 28–11. DOI: 10.1186/2193-1801-2-28.
  • Inbathamizh, L.; Mekalai Ponnu, T.; Jancy Mary, E. Biogenic Silver Nanoparticles from Abutilon Indicum: Their Antioxidant, Antibacterial and Cytotoxic Effects In Vitro. J. Pharm. Res. 2013, 6, 32. DOI: 10.1016/j.colsurfb.2015.01.052.
  • Shahidi, F.; Zhong, Y. Measurement of Antioxidant Activity. J. Funct. Foods 2015, 18, 757–781. DOI: 10.1016/j.jff.2015.01.047..
  • Reshma, A. K.; Brindha, P. In Vitro Anti-Inflammatory, Antioxidant and Nephroprotective Studies on Leaves of Aegle marmelos and Ocimum sanctum. Asian J. Pharm. Clin. Res. 2014, 7. DOI: 10.22159/ajpcr.2018.v11i4.23583..
  • Mizushima, Y.; Kobayashi, M. Interaction of Anti-Inflammatory Drugs with Serum Proteins, Especially with Some Biologically Active Proteins. J. Pharm. Pharmacol. 1968, 20, 169–173. DOI: 10.1111/j.2042-7158.1968.tb09718.x.
  • Chou, C. T. The Anti Inflammatory Effect of an Extract of Tripterygium Wilfordii Hook F on Adjuvant‐Induced Paw Oedema in Rats and Inflammatory Mediators Release. Phytother. Res. 1997, 11, 152–154. DOI: 10.1002/(SICI)1099-1573(199703)11:2<152::AID-PTR45>3.0.CO;2-L.
  • Zhang, X.; Shuai, Y.; Tao, H.; Li, C.; He, L. Novel Method for the Quantitative Analysis of Protease Activity: The Casein Plate Method and its Applications. ACS Omega. 2021, 6, 3675–3680. DOI: 10.1021/acsomega.0c05192..
  • Subashini, K.; Prakash, S.; Sujatha, V. V. Anticancer Activity of Copper Oxide Nanoparticles, Synthesized from Brassia actinophylla Flower Extract K. Asian J. Chem. 2019, 31, 1899–1904. DOI: 10.14233/ajchem.2019.22035..
  • Nasrollahzadeh, M.; Sajjadi, M.; Iravani, S.; Varma, R. S. Green-Synthesized Nanocatalysts and Nanomaterials for Water Treatment: Current Challenges and Future Perspectives. J. Hazard. Mater. 2021, 401, 123401. DOI: 10.1016/j.jhazmat.2020.123401..
  • Senobari, S.; Nezamzadeh-Ejhieh, A. A Comprehensive Study on the Photocatalytic Activity of Coupled Copper Oxide–Cadmium Sulfide Nanoparticles. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2018, 196, 334–343. DOI: 10.1016/j.saa.2018.02.043..
  • Naghdi, S.; Sajjadi, M.; Nasrollahzadeh, M.; Rhee, K. Y.; Sajadi, S. M.; Jaleh, B. Cuscuta reflexa Leaf Extract Mediated Green Synthesis of the Cu Nanoparticles on Graphene Oxide/Manganese Dioxide Nanocomposite and its Catalytic Activity Toward Reduction of Nitroarenes and Organic Dyes. J. Taiwan Inst. Chem. Eng. 2018, 86, 158–173. DOI: 10.1016/j.jtice.2017.12.017..
  • Kumar, M.; Das, R. R.; Samal, M.; Yun, K. Highly Stable Functionalized Cuprous Oxide Nanoparticles for Photocatalytic Degradation of Methylene Blue. Mater. Chem. Phys. 2018, 218, 272–278. DOI: 10.1016/j.matchemphys.2018.07.048..
  • Sundaramurthy, N.; Parthiban, C. Biosynthesis of Copper Oxide Nanoparticles Using Pyrus pyrifolia Leaf Extract and Evolve the Catalytic Activity. Int. Res. J. Eng. Technol. 2015, 2, 332–338. DOI: 10.1155/2021/6693302..
  • Sahu, K.; Singh, J.; Mohapatra, S. Catalytic Reduction of 4-Nitrophenol and Photocatalytic Degradation of Organic Pollutants in Water by Copper Oxide Nanosheets. Opt. Mater. 2019, 93, 58–69. DOI: 10.1016/j.optmat.2019.05.007..
  • Muthuvel, A.; Jothibas, M.; Manoharan, C. Synthesis of Copper Oxide Nanoparticles by Chemical and Biogenic Methods: Photocatalytic Degradation and In Vitro Antioxidant Activity. Nanotechnol. Environ. Eng. 2020, 5, 1–19. DOI: 10.1007/s41204-020-00078-w..
  • Vasantharaj, S.; Sathiyavimal, S.; Saravanan, M.; Senthilkumar, P.; Gnanasekaran, K.; Shanmugavel, M.; Manikandan, E.; Pugazhendhi, A. Synthesis of Ecofriendly Copper Oxide Nanoparticles for Fabrication Over Textile Fabrics: Characterization of Antibacterial Activity and Dye Degradation Potential. J. Photochem. Photobiol. B. 2019, 191, 143–149. DOI: 10.1016/j.jphotobiol.2018.12.026..

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.