92
Views
0
CrossRef citations to date
0
Altmetric
Articles

Green fabrication of silver nanoparticles mediated by Bistorta officinalis aqueous extract: putative mechanism for apoptosis-inducing properties

, , , , &
Pages 872-880 | Received 28 Nov 2020, Accepted 11 Jul 2021, Published online: 27 Jul 2021

References

  • Zabaleta, J. Multifactorial Etiology of Gastric Cancer. Cancer Epigenetics 2012, 863, 411–435.
  • Fock, K. The Epidemiology and Prevention of Gastric Cancer. Aliment. Pharmacol. Ther. 2014, 40, 250–260. DOI: 10.1111/apt.12814.
  • Ratan, Z. A.; Haidere, M. F.; Nurunnabi, M.; Shahriar, S. M.; Ahammad, A.; Shim, Y. Y.; Reaney, M. J.; Cho, J. Y. Green Chemistry Synthesis of Silver Nanoparticles and Their Potential Anticancer Effects. Cancers 2020, 12, 855. DOI: 10.3390/cancers12040855.
  • Baharara, J.; Hosseini, N.; Farzin, T. R. Extremely Low Frequency Electromagnetic Field Sensitizes Cisplatin-Resistant Human Ovarian Adenocarcinoma Cells Via P53 Activation. Cytotechnology 2016, 68, 1403–1413. DOI: 10.1007/s10616-015-9900-y.
  • Wang, M.; Thanou, M. Targeting Nanoparticles to Cancer. Pharmacol. Res. 2010, 62, 90–99. DOI: 10.1016/j.phrs.2010.03.005.
  • Yaqoob, A. A.; Ahmad, H.; Parveen, T.; Ahmad, A.; Oves, M.; Ismail, I. M.; Qari, H. A.; Umar, K.; Mohamad Ibrahim, M. N. Recent Advances in Metal Decorated Nanomaterials and Their Various Biological Applications: A Review. Front. Chem. 2020, 8, 341. DOI: 10.3389/fchem.2020.00341.
  • Chouhan, N. Silver Nanoparticles: Synthesis, Characterization and Applications. London, UK: InTech Open, 2018.
  • Marin, S.; Mihail Vlasceanu, G.; Elena Tiplea, R.; Raluca Bucur, I.; Lemnaru, M.; Minodora Marin, M.; Mihai Grumezescu, A. Applications and Toxicity of Silver Nanoparticles: A Recent Review. Curr. Top. Med. Chem. 2015, 15, 1596–1604. DOI: 10.2174/1568026615666150414142209.
  • Rónavári, A.; Kovács, D.; Igaz, N.; Vágvölgyi, C.; Boros, I. M.; Kónya, Z.; Pfeiffer, I.; Kiricsi, M. Biological Activity of Green-Synthesized Silver Nanoparticles Depends on the Applied Natural Extracts: A Comprehensive Study. Int. J. Nanomed. 2017, 12, 871–883. DOI: 10.2147/IJN.S122842.
  • Lee, S. H.; Jun, B.-H. Silver Nanoparticles: Synthesis and Application for Nanomedicine. IJMS 2019, 20, 865. DOI: 10.3390/ijms20040865.
  • Yaqoob, A. A.; Umar, K.; Ibrahim, M. N. M. Silver Nanoparticles: Various Methods of Synthesis, Size Affecting Factors and Their Potential Applications—A Review. Appl. Nanosci. 2020, 10, 1369–1378. DOI: 10.1007/s13204-020-01318-w.
  • Dos Santos, C. A.; Seckler, M. M.; Ingle, A. P.; Gupta, I.; Galdiero, S.; Galdiero, M.; Gade, A.; Rai, M. Silver Nanoparticles: Therapeutical Uses, Toxicity, and Safety Issues. J. Pharm. Sci. 2014, 103, 1931–1944. DOI: 10.1002/jps.24001.
  • McShan, D.; Ray, P. C.; Yu, H. Molecular Toxicity Mechanism of Nanosilver. J. Food Drug Anal. 2014, 22, 116–127. DOI: 10.1016/j.jfda.2014.01.010.
  • Arya, G.; Sharma, N.; Mankamna, R.; Nimesh, S. In Antimicrobial silver nanoparticles: future of nanomaterials. Microbial Nanobionics; New York, NY: Springer: 2019; pp. 89–119.
  • Firdhouse, J.; Lalitha, P. Apoptotic Efficacy of Biogenic Silver Nanoparticles on Human Breast Cancer MCF-7 Cell Lines. Prog. Biomater. 2015, 4, 113–121. DOI: 10.1007/s40204-015-0042-2.
  • Yaqoob, S. B.; Adnan, R.; Khan, R. M. R.; Rashid, M. Gold, Silver, and Palladium Nanoparticles: A Chemical Tool for Biomedical Applications. Front. Chem. 2020, 8, 376. DOI: 10.3389/fchem.2020.00376.
  • Aziz, N.; Faraz, M.; Sherwani, M. A.; Fatma, T.; Prasad, R. Illuminating the Anticancerous Efficacy of a New Fungal Chassis for Silver Nanoparticle Synthesis. Front. Chem. 2019, 7, 65. DOI: 10.3389/fchem.2019.00065.
  • Sukirtha, R.; Priyanka, K. M.; Antony, J. J.; Kamalakkannan, S.; Thangam, R.; Gunasekaran, P.; Krishnan, M.; Achiraman, S. Cytotoxic Effect of Green Synthesized Silver Nanoparticles Using Melia Azedarach Against In Vitro HeLa Cell Lines and Lymphoma Mice Model. Process Biochem. 2012, 47, 273–279. DOI: 10.1016/j.procbio.2011.11.003.
  • Zhang, X.-F.; Shen, W.; Gurunathan, S. Silver Nanoparticle-Mediated Cellular Responses in Various Cell Lines: An In Vitro Model. IJMS 2016, 17, 1603. DOI: 10.3390/ijms17101603.
  • Indira, T.; Lakshmi, P. Magnetic Nanoparticles—A Review. Int. J. Pharma. Sci. Nanotechnol. 2010, 3, 1035–1042.
  • Roy, N.; Barik, A. Green Synthesis of Silver Nanoparticles from the Unexploited Weed Resources. Int. J. Nanotechnol. 2010, 4, 95.
  • Guilger-Casagrande, M.; Lima, R. d. Synthesis of Silver Nanoparticles Mediated by Fungi: A Review. Front. Bioeng. Biotechnol. 2019, 7, 287. DOI: 10.3389/fbioe.2019.00287.
  • Baharara, J.; Namvar, F.; Ramezani, T.; Hosseini, N.; Mohamad, R. Green Synthesis of Silver Nanoparticles Using Achillea Biebersteinii Flower Extract and Its Anti-Angiogenic Properties in the Rat Aortic Ring Model. Molecules 2014, 19, 4624–4634. DOI: 10.3390/molecules19044624.
  • Boroumand Moghaddam, A.; Namvar, F.; Moniri, M.; Md Tahir, P.; Azizi, S.; Mohamad, R. Nanoparticles Biosynthesized by Fungi and Yeast: A Review of Their Preparation, Properties, and Medical Applications. Molecules 2015, 20, 16540–16565. DOI: 10.3390/molecules200916540.
  • Zhang, X.-F.; Liu, Z.-G.; Shen, W.; Gurunathan, S. Silver Nanoparticles: Synthesis, Characterization, Properties, Applications, and Therapeutic Approaches. IJMS 2016, 17, 1534. DOI: 10.3390/ijms17091534.
  • Khandelwal, R.; Arora, S.; Phase, D.; Pareek, A.; Ravikant. Anti Cancer Potential of Green Synthesized Silver Nanoparticles. In AIP Conference Proceedings; AIP Publishing LLC, 2020; p 020046.
  • Makarov, V.; Love, A.; Sinitsyna, O.; Makarova, S.; Yaminsky, I.; Taliansky, M.; Kalinina, N. “Green” Nanotechnologies: Synthesis of Metal Nanoparticles Using Plants. Acta Naturae 2014, 6, 35–44. DOI: 10.32607/20758251-2014-6-1-35-44.
  • Nair, B.; Pradeep, T. Coalescence of Nanoclusters and Formation of Submicron Crystallites Assisted by Lactobacillus Strains. Crystal Growth Des. 2002, 2, 293–298. DOI: 10.1021/cg0255164.
  • Shiny, P.; Mukherjee, A.; Chandrasekaran, N. Marine Algae Mediated Synthesis of the Silver Nanoparticles and Its Antibacterial Efficiency. Int. J. Pharm. Pharma. Sci. 2013, 5, 239–241.
  • Mie, R.; Samsudin, M. W.; Din, L. B.; Ahmad, A.; Ibrahim, N.; Adnan, S. N. A. Synthesis of Silver Nanoparticles with Antibacterial Activity Using the Lichen Parmotrema Praesorediosum. Int. J. Nanomed. 2014, 9, 121–127. DOI: 10.2147/IJN.S52306.
  • Zhang, T.; Wang, L.; Chen, Q.; Chen, C. Cytotoxic Potential of Silver Nanoparticles. Yonsei Med. J. 2014, 55, 283–291. DOI: 10.3349/ymj.2014.55.2.283.
  • Sharifi-Rad, M.; Pohl, P.; Epifano, F.; Álvarez-Suarez, J. M. Green Synthesis of Silver Nanoparticles Using Astragalus Tribuloides Delile. Root Extract: Characterization, Antioxidant, Antibacterial, and anti-Inflammatory Activities. Nanomaterials 2020, 10, 2383. DOI: 10.3390/nano10122383.
  • Sharifi-Rad, M.; Pohl, P. Synthesis of Biogenic Silver Nanoparticles (Agcl-Nps) Using a Pulicaria Vulgaris Gaertn. aerial Part Extract and Their Application as Antibacterial, Antifungal and Antioxidant Agents. Nanomaterials 2020, 10, 638. DOI: 10.3390/nano10040638.
  • Bagherzade, G.; Tavakoli, M. M.; Namaei, M. H. Green Synthesis of Silver Nanoparticles Using Aqueous Extract of Saffron (Crocus sativus L.) Wastages and Its Antibacterial Activity against Six Bacteria. Asian Pac. J. Trop. Biomed. 2017, 7, 227–233. DOI: 10.1016/j.apjtb.2016.12.014.
  • Khatamian, N.; Homayouni Tabrizi, M.; Ardalan, P.; Yadamani, S.; Darchini Maragheh, A. Synthesis of Carum Carvi Essential Oil Nanoemulsion, the Cytotoxic Effect, and Expression of Caspase 3 Gene. J. Food Biochem. 2019, 43, e12956. DOI: 10.1111/jfbc.12956.
  • Boskabadi, S. H.; Balanezhad, S. Z.; Neamati, A.; Tabrizi, M. H. The Green-Synthesized Zinc Oxide Nanoparticle as a Novel Natural Apoptosis Inducer in Human Breast (MCF7 and MDA-MB231) and Colon (HT-29) Cancer Cells. Inorgan. Nano Metal Chem. 2021, 51, 733–743. DOI: 10.1080/24701556.2020.1808991.
  • Ghandehari, S.; Tabrizi, M. H.; Ardalan, P.; Neamati, A.; Shali, R. Green Synthesis of Silver Nanoparticles Using Rubia Tinctorum Extract and Evaluation the anti-Cancer Properties In Vitro. IET Nanobiotechnol. 2019, 13, 269–274. DOI: 10.1049/iet-nbt.2018.5190.
  • Homayouni-Tabrizi, M.; Soltani, M.; Karimi, E.; Namvar, F.; Pouresmaeil, V.; Es-Haghi, A. Putative Mechanism for Anticancer Properties of Ag–PP (NPs) Extract. IET Nanobiotechnol. 2019, 13, 617–620. DOI: 10.1049/iet-nbt.2018.5199.
  • Hajebi, S.; Tabrizi, M. H.; Moghaddam, M. N.; Shahraki, F.; Yadamani, S. Rapeseed Flower Pollen Bio-Green Synthesized Silver Nanoparticles: A Promising Antioxidant, Anticancer and Antiangiogenic Compound. J. Biol. Inorg. Chem. 2019, 24, 395–404. DOI: 10.1007/s00775-019-01655-4.
  • Wiley, B.; Sun, Y.; Mayers, B.; Xia, Y. Shape‐Controlled Synthesis of Metal Nanostructures: The Case of Silver. Chemistry 2005, 11, 454–463. DOI: 10.1002/chem.200400927.
  • Narayanan, K. B.; Sakthivel, N. Biosynthesis of Silver Nanoparticles by Phytopathogen Xanthomonas oryzae pv. oryzae Strain BXO8. J. Microbiol. Biotechnol. 2013, 23, 1287–1292. DOI: 10.4014/jmb.1304.04047.
  • Ingle, A.; Gade, A.; Pierrat, S.; Sonnichsen, C.; Rai, M. Mycosynthesis of Silver Nanoparticles Using the Fungus Fusarium Acuminatum and Its Activity against Some Human Pathogenic Bacteria. CNANO 2008, 4, 141–144. DOI: 10.2174/157341308784340804.
  • Singh, D. K.; Jagannathan, R.; Khandelwal, P.; Abraham, P. M.; Poddar, P. In Situ Synthesis and Surface Functionalization of Gold Nanoparticles with Curcumin and Their Antioxidant Properties: An Experimental and Density Functional Theory Investigation. Nanoscale 2013, 5, 1882–1893. DOI: 10.1039/c2nr33776b.
  • Santhoshkumar, T.; Rahuman, A. A.; Rajakumar, G.; Marimuthu, S.; Bagavan, A.; Jayaseelan, C.; Zahir, A. A.; Elango, G.; Kamaraj, C. Synthesis of Silver Nanoparticles Using Nelumbo Nucifera Leaf Extract and Its Larvicidal Activity against Malaria and Filariasis Vectors. Parasitol. Res. 2011, 108, 693–702. DOI: 10.1007/s00436-010-2115-4.
  • Syed, A.; Saraswati, S.; Kundu, G. C.; Ahmad, A. Biological Synthesis of Silver Nanoparticles Using the Fungus Humicola sp. and Evaluation of Their Cytoxicity Using Normal and Cancer Cell Lines. Spectrochim. Acta A. Mol. Biomol. Spectrosc. 2013, 114, 144–147. DOI: 10.1016/j.saa.2013.05.030.
  • Jahan, D.; Begum, W.; Roqaiya, M. Review on Beekhe Anjbar (Root of Polygonum bistorta L.) with Unani Perspective and Modern Pharmacology. World J. Pharm. Sci. 2015, 4, 314–323.
  • Anand, P.; Kunnumakkara, A. B.; Newman, R. A.; Aggarwal, B. B. Bioavailability of Curcumin: Problems and Promises. Mol. Pharm. 2007, 4, 807–818. DOI: 10.1021/mp700113r.
  • Ventura, A.; Kirsch, D. G.; McLaughlin, M. E.; Tuveson, D. A.; Grimm, J.; Lintault, L.; Newman, J.; Reczek, E. E.; Weissleder, R.; Jacks, T. Restoration of p53 Function Leads to Tumour Regression In Vivo. Nature 2007, 445, 661–665. DOI: 10.1038/nature05541.
  • Sharma, V. K.; Siskova, K. M.; Zboril, R.; Gardea-Torresdey, J. L. Organic-Coated Silver Nanoparticles in Biological and Environmental Conditions: Fate, Stability and Toxicity. Adv. Colloid Interface Sci. 2014, 204, 15–34. DOI: 10.1016/j.cis.2013.12.002.
  • He, Y.; Du, Z.; Ma, S.; Liu, Y.; Li, D.; Huang, H.; Jiang, S.; Cheng, S.; Wu, W.; Zhang, K.; Zheng, X. Effects of Green-Synthesized Silver Nanoparticles on Lung Cancer Cells In Vitro and Grown as Xenograft Tumors In Vivo. Int. J. Nanomed. 2016, 11, 1879–1887. DOI: 10.2147/IJN.S103695.
  • Mittal, A. K.; Bhaumik, J.; Kumar, S.; Banerjee, U. C. Biosynthesis of Silver Nanoparticles: Elucidation of Prospective Mechanism and Therapeutic Potential. J. Colloid Interface Sci. 2014, 415, 39–47. DOI: 10.1016/j.jcis.2013.10.018.
  • Sathishkumar, P.; Vennila, K.; Jayakumar, R.; Yusoff, A. R. M.; Hadibarata, T.; Palvannan, T. Phyto-Synthesis of Silver Nanoparticles Using Alternanthera Tenella Leaf Extract: An Effective Inhibitor for the Migration of Human Breast Adenocarcinoma (MCF-7) Cells. Bioprocess Biosyst. Eng. 2016, 39, 651–659. DOI: 10.1007/s00449-016-1546-4.
  • Sre, P. R.; Reka, M.; Poovazhagi, R.; Kumar, M. A.; Murugesan, K. Antibacterial and Cytotoxic Effect of Biologically Synthesized Silver Nanoparticles Using Aqueous Root Extract of Erythrina Indica Lam. Spectrochim. Acta A. Mol. Biomol. Spectrosc. 2015, 135, 1137–1144. DOI: 10.1016/j.saa.2014.08.019.
  • Kathiravan, V.; Ravi, S.; Ashokkumar, S. Synthesis of Silver Nanoparticles from Melia Dubia Leaf Extract and Their In Vitro Anticancer Activity. Spectrochim. Acta A. Mol. Biomol. Spectrosc. 2014, 130, 116–121. DOI: 10.1016/j.saa.2014.03.107.
  • Venugopal, K.; Rather, H. A.; Rajagopal, K.; Shanthi, M. P.; Sheriff, K.; Illiyas, M.; Rather, R. A.; Manikandan, E.; Uvarajan, S.; Bhaskar, M.; Maaza, M. Synthesis of Silver Nanoparticles (Ag NPs) for Anticancer Activities (MCF 7 Breast and A549 Lung Cell Lines) of the Crude Extract of Syzygium aromaticum. J. Photochem. Photobiol. B. 2017, 167, 282–289. DOI: 10.1016/j.jphotobiol.2016.12.013.
  • Vijistella Bai, G. Green Synthesis of Silver Nanostructures against Human Cancer Cell Lines and Certain Pathogens. Int. J. Pharma. Chem. Biol. Sci. 2014, 4, 101–111.
  • Prabhu, D.; Arulvasu, C.; Babu, G.; Manikandan, R.; Srinivasan, P. Biologically Synthesized Green Silver Nanoparticles from Leaf Extract of Vitex negundo L. induce Growth-Inhibitory Effect on Human Colon Cancer Cell Line HCT15. Process Biochem. 2013, 48, 317–324. DOI: 10.1016/j.procbio.2012.12.013.
  • Vasanth, K.; Ilango, K.; MohanKumar, R.; Agrawal, A.; Dubey, G. P. Anticancer Activity of Moringa Oleifera Mediated Silver Nanoparticles on Human Cervical Carcinoma Cells by Apoptosis Induction. Colloids Surf. B. Biointerf. 2014, 117, 354–359. DOI: 10.1016/j.colsurfb.2014.02.052.
  • Kwon, T.; Woo, H. J.; Kim, Y. H.; Lee, H. J.; Park, K. H.; Park, S.; Youn, B. Optimizing Hemocompatibility of Surfactant-Coated Silver Nanoparticles in Human Erythrocytes. J. Nanosci. Nanotechnol. 2012, 12, 6168–6175. DOI: 10.1166/jnn.2012.6433.
  • Asharani, P.; Hande, M. P.; Valiyaveettil, S. Anti-Proliferative Activity of Silver Nanoparticles. BMC Cell Biol. 2009, 10, 65. DOI: 10.1186/1471-2121-10-65.
  • Mao, X.; Seidlitz, E.; Truant, R.; Hitt, M.; Ghosh, H. P. Re-Expression of TSLC1 in a Non-Small-Cell Lung Cancer Cell Line Induces Apoptosis and Inhibits Tumor Growth. Oncogene 2004, 23, 5632–5642. DOI: 10.1038/sj.onc.1207756.
  • Saxena, A.; Viswanathan, S.; Moshynska, O.; Tandon, P.; Sankaran, K.; Sheridan, D. P. Mcl‐1 and Bcl‐2/Bax Ratio Are Associated with Treatment Response but Not with Rai Stage in B‐Cell Chronic Lymphocytic Leukemia. Am. J. Hematol. 2004, 75, 22–33. DOI: 10.1002/ajh.10453.
  • Baharara, J.; Namvar, F.; Ramezani, T.; Mousavi, M.; Mohamad, R. Silver Nanoparticles Biosynthesized Using Achillea Biebersteinii Flower Extract: Apoptosis Induction in MCF-7 Cells via Caspase Activation and Regulation of Bax and Bcl-2 Gene Expression. Molecules 2015, 20, 2693–2706. DOI: 10.3390/molecules20022693.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.