189
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Synthesis, structural characterization, electrochemical and photocatalytic properties of vanadium complex anchored on reduced graphene oxide

&
Pages 881-889 | Received 05 Dec 2020, Accepted 11 Jul 2021, Published online: 24 Jul 2021

References

  • Komal, J.; Veerendra, S.; Gurjar, B. R. Water Pollution, Human Health and Remediation. Water Remediation 2017, 11–27. DOI: 10.1007/978-981-10-7551-3_2.
  • Angelo, A.; Marcello, G.; Serena, S. Environmental Pollution as Engine of Industrialization. Commun. Nonlinear Sci. 2018, 58, 262–273. DOI: 10.1016/j.cnsns.2017.06.016.
  • Shakeel, A. K.; Sammia, S.; Maryam, N.; Sadia, K.; Sabah, Z.; Muhammad, N. S.; Shah, M. H. Efficient Template Based Synthesis of Ni Nanorods by Etching Porous Alumina for Their Enhanced Photocatalytic Activities against Methyl Red and Methyl Orange Dyes. J. Mol. Struct. 2019, 1184, 316–323. DOI: 10.1016/j.molstruc.2019.02.038.
  • Shakeel, A. K.; Zunaira, A.; Sammia, S.; Iswha, A.; Komal, R.; Mudassir, S.; Urooj, F. Synthesis of TiO2/Graphene Oxide Nanocomposites for Their Enhanced Photocatalytic Activity against Methylene Blue Dye and Ciprofloxacin. Compos. Part B: Eng. 2019, 175,107120. DOI: 10.1016/j.compositesb.2019.107120.
  • Shakeel, A. K.; Sammia, S.; Basma, S.; Urooj, F.; Saddam, A. A. Green Synthesis of MnO Nanoparticles Using Abutilon Indicum Leaf Extract for Biological, Photocatalytic, and Adsorption Activities. Biomolecules 2020, 10, 785. DOI: 10.3390/biom10050785.
  • Sandhya, M.; Pankaj, C.; Bharagava, R. N. Conventional Methods for the Removal of Industrial Pollutants, Their Merits and Demerits; Springer Nature, Singapore Pte Ltd, 2018; pp 1–31. DOI: 10.1007/978-981-10-8669-4_1.
  • Mingming, L.; Guolin, J.; Yongjian, P.; Debin, L.; Lifeng, J. Treatment of Refractory Organic Pollutants in Industrial Wastewater by Wet Air Oxidation. Arab. J. Chem., 2012, 10, 5769–5776. DOI: 10.1016/j.arabjc.2012.12.003.
  • Grégorio, C.; Eric, L. Advantages and Disadvantages of Techniques Used for Wastewater Treatment. Environ. Chem. Lett. 2019, 17, 145–155. DOI: 10.1007/s10311-018-0785-9.
  • Khan, S. A.; Shahid, S.; Ayaz, A.; Alkahtani, J.; Elshikh, M. S.; Riaz, T. Phytomolecules-Coated NiO Nanoparticles Synthesis Using Abutilon indicum Leaf Extract: Antioxidant, Antibacterial, and Anticancer Activities. Int. J. Nanomed. 2021, 16, 1757–1777. DOI: 10.2147/IJN.S294012.
  • Nitish, R.; 1norihiro, S.; Chiaki, T.; Akira, F. Recent Improvements in the Production of Solar Fuels: From CO2 Reduction to Water Splitting and Artificial Photosynthesis. BCSJ 2019, 92, 178–192. DOI: 10.1246/bcsj.20180250.
  • Josue, M. G.; Matheus, I. S.; Lucio, A.; Koiti, A. Vanadium-Containing Electro and Photocatalysts for the Oxygen Evolution Reaction: A Review. J. Mater. Chem. A 2020, 8, 2171–2206. DOI: 10.1039/C9TA10857B.
  • Ehsan, M. A.; Naeem, R.; McKee, V.; Saeed, A. H.; Pandikumar, A.; Huang, N. M.; Mazhar, M. Electrochemical Sensing of Nitrite Using a Copper–Titanium Oxide Composite Derived from a Hexanuclear Complex. RSC Adv. 2016, 6, 27852–27861. DOI: 10.1039/C6RA00104A.
  • Oiye, E. N.; Ribeiro, M. F. M.; Katayama, J. M. T.; Tadini, M. C.; Balbino, M. A.; Eleotério, I. C.; Magalhães, J.; Castro, A. S.; Silva, R. S. M.; Junior, J. W. C.; et al. Electrochemical Sensors Containing Schiff Bases and Their Transition Metal Complexes to Detect Analytes of Forensic, Pharmaceutical and Environmental Interest. A Review. Crit. Rev. Anal. Chem. 2019, 49, 488–509. DOI: 10.1080/10408347.2018.1561242.
  • Fatah, S. M. A.; Sanchez, M. D.; García, D. D.; Prashar, S.; Rahman, L. H. A. Electrochemical Sensors Containing Schiff Bases and Their Transition Metal Complexes to Detect Analytes of Forensic, Pharmaceutical and Environmental Interest. A Review. J. Inorg. Organomet. Polym. Mater. 2019, 6, 488–509. DOI: 10.1080/10408347.2018.1561242.
  • Liu, H.; Cui, Y.; Li, P.; Zhou, Y.; Zhu, X.; Tang, Y.; Chen, Y.; Lu, T. Iron (III) Diethylenetriaminepentaacetic Acid Complex on Polyallylamine Functionalized Multiwalled Carbon Nanotubes: Immobilization, Direct Electrochemistry and Electrocatalysis. Analyst 2013, 138, 2647–2653. DOI: 10.1039/c3an00113j.
  • Z Shakeel, A. K.; Sammia, S.; Basma, S.; Sadaf, H.; Hesham, S. A. Green Synthesis of Chromium Oxide Nanoparticles for Antibacterial, Antioxidant Anticancer, and Biocompatibility Activities. Int. J. Mol. Sci. 2021, 22, 502. DOI: 10.3390/ijms22020502.
  • Tangestaninejad, S.; Moghadam, M.; Mirkhani, V.; Mohammadpoor-Baltork, I.; Ghani, K. Alkene Epoxidation Catalyzed by Molybdenum Supported on Functionalized MCM-41 Containing N–S Chelating Schiff Base Ligand. Catal. Commun. 2009, 10, 853–858. DOI: 10.1016/j.catcom.2008.12.010.
  • Chen, Q.; Li, X.; Min, X.; Cheng, D.; Zhou, J.; Li, Y.; Xie, Z.; Liu, P.; Cai, W.; Zhang, C. Determination of Catechol and Hydroquinone with High Sensitivity Using MOF-Graphene Composites Modified Electrode. J. Electroanal. Chem. 2017, 789, 114–122. DOI: 10.1016/j.jelechem.2017.02.033.
  • Dzhardimalieva, G. I.; Uflyand, I. E. Design Strategies of Metal Complexes Based on Chelating Polymer Ligands and Their Application in Nanomaterials Science. J. Inorg. Organomet. Polym. 2018, 28, 1305–1393. DOI: 10.1016/j.jelechem.2017.02.033.
  • Antony, R.; Manickam, S. T. D.; Balakumar, S. Cu (II), Co (II) and Ni (II) Complexes Installed on Functionalized Silica Surface for Hydrogen Peroxide Assisted Cyclohexane Oxidation. J. Inorg. Organomet. Polym. 2017, 27, 418–426. DOI: 10.1007/s10904-016-0482-8.
  • Loh, K. P.; Bao, Q.; Eda, G.; Chhowalla, M. Graphene Oxide as a Chemically Tunable Platform for Optical Applications. Nat. Chem. 2010, 2, 1015–1024. DOI: 10.1038/nchem.907.
  • Bolotin, K. I.; Sikes, K. J.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J.; Kim, P.; Stormer, H. L. Ultrahigh Electron Mobility in Suspended Graphene. Solid State Commun. 2008, 146, 351–355. DOI: 10.1016/j.ssc.2008.02.024.
  • Novoselov, K. S. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669. DOI: 10.1126/science.1102896.
  • Kemp, K. C.; Georgakilas, V.; Otyepka, M.; Bourlinos, A. B.; Chandra, V.; Kim, N.; Hobza, P.; Zboril, R.; Kim, K. S. Functionalization of Graphene: Covalent and Non-Covalent Approaches, Derivatives and Applications. Chem. Rev. 2012, 112, 6156–6214. DOI: 10.1021/cr3000412.
  • Ghosh, A.; Rao, K. V.; George, S. J.; Rao, C. N. R. Noncovalent Functionalization, Exfoliation, and Solubilization of Graphene in Water by Employing a Fluorescent Coronene Carboxylate. Chemistry 2010, 16, 2700–2704. DOI: 10.1002/chem.200902828.
  • Jose, J.; Rajamani, A. R.; Sreekanth, A.; Jose, S. P.; Peter, S. C.; Sreeja, P. B. Photophysical and Electrochemical Studies of Anchored Chromium (III) Complex on Reduced Graphene Oxide via Diazonium Chemistry. Appl. Organomet. Chem. 2019, 33, e5063. DOI: 10.1002/aoc.5063.
  • Assresahegn, B. D.; Brousse, T.; Bélanger, D. Advances on the Use of Diazonium Chemistry for Functionalization of Materials Used in Energy Storage Systems. Carbon 2015, 92, 362–381. DOI: 10.1016/j.carbon.2015.05.030.
  • Bernal, M. M.; Pierro, A. D.; Novara, C.; Giorgis, F.; Mortazavi, B.; Saracco, G.; Fina, A. Edge-Grafted Molecular Junctions between Graphene Nanoplatelets: Applied Chemistry to Enhance Heat Transfer in Nanomaterials. Adv. Funct. Mater. 2018, 28, 1706954. DOI: 10.1002/adfm.201706954.
  • Jose, J.; Viswanathan, S.; Shaji, S.; Sreeja, P. B. An Electrochemical Sensor for Nanomolar Detection of Caffeine Based on Nicotinic Acid Hydrazide Anchored on Graphene Oxide (NAHGO). Sci. Rep. 2021, 11, 11662. DOI: 10.1038/s41598-021-89427-6.
  • Omidi, S.; Kakanejadifard, A.; Azarbani, F. Noncovalent Functionalization of Graphene Oxide and Reduced Graphene Oxide with Schiff Bases as Antibacterial Agents. J. Mol. Liq. 2017, 242, 812–821. DOI: 10.1016/j.molliq.2017.07.074.
  • Jose, J.; Jose, S. P.; Abinaya, S.; Sreeja, P. B.; Shaji, S. Benzoyl Hydrazine-Anchored Graphene Oxide as Supercapacitor Electrodes. Mater. Chem. Phys. 2020, 242, 123666. DOI: 10.1016/j.matchemphys.2020.123666.
  • Jose, J.; Jose, S. P.; Prasankumar, T.; Shaji, S.; Pillai, S.; Sreeja, P. B. Emerging Ternary Nanocomposite of rGO Draped Palladium Oxide/Polypyrrole for High Performance Supercapacitors. J. Alloys Compd. 2021, 855, 157481. DOI: 10.1016/j.jallcom.2020.157481.
  • Prasankumar, T.; Wiston, B. R.; Gautam, C. R.; Ilangovan, R.; Jose, S. P. Synthesis and Enhanced Electrochemical Performance of PANI/Fe3O4 Nanocomposite as Supercapacitor Electrode. J. Alloys Compd. 2018, 757, 466–475. DOI: 10.1016/j.jallcom.2018.05.108.
  • Mungse, H. P.; Verma, S.; Kumar, N.; Sain, B.; Khatri, O. P. Grafting of Oxo-Vanadium Schiff Base on Graphene Nanosheets and Its Catalytic Activity for the Oxidation of Alcohols. J. Mater. Chem. 2012, 22, 5427–5433. DOI: 10.1039/c2jm15644j.
  • Su, H.; Li, Z.; Huo, Q.; Guan, J.; Kan, Q. Immobilization of Transition Metal (Fe2+, Co2+, VO2+ or Cu2+) Schiff Base Complexes onto Graphene Oxide as Efficient and Recyclable Catalysts for Epoxidation of Styrene. RSC Adv. 2014, 4, 9990–9996. DOI: 10.1039/c3ra47732k.
  • Verma, S.; Aila, M.; Kaul, S.; Jain, S. L. Immobilized Oxo-Vanadium Schiff Base on Graphene Oxide as an Efficient and Recyclable Catalyst for the Epoxidation of Fatty Acids and Esters. RSC Adv. 2014, 4, 30598–30604. DOI: 10.1039/C4RA03454F.
  • Rana, S.; Jonnalagadda, S. B. Synthesis and Characterization of Amine Functionalized Graphene Oxide and Scope as Catalyst for Knoevenagel Condensation Reaction. Cat. Commun. 2017, 92, 31–34. DOI: 10.1016/j.catcom.2016.12.023.
  • Kumari, S.; Shekhar, A.; Pathak, D. D. Synthesis and Characterization of a Cu(II) Schiff Base Complex Immobilized on Graphene Oxide and Its Catalytic Application in the Green Synthesis of Propargylamines. RSC Adv. 2016, 6, 15340–15344. DOI: 10.1039/C5RA25209A.
  • Santos, A. M.; Kühn, F. E.; Xue, W. M.; Herdtweck, E. Syntheses and Characterisation of Methyltrioxorhenium Adducts of Low-Valence Organometallic Lewis Bases. J. Chem. Soc., Dalton Trans. 2000, 1, 3570–3574. DOI: 10.1039/b004640j.
  • Pradhan, M.; Roy, A.; Sinha, A. K.; Sahoo, R.; Deb, D.; Pal, T. Solid-State Transformation of Single Precursor Vanadium Complex Nanostructures to V2O5 and VO2: Catalytic Activity of V2O5 for Oxidative Coupling of 2-Naphthol . Dalton Trans. 2015, 44, 1889–1899. DOI: 10.1039/C4DT02863E.
  • Jhonsi, M. A.; Nithya, C.; Kathiravan, A. Probing Electron Transfer Dynamics of Pyranine with Reduced Graphene Oxide. Phys. Chem. Chem. Phys. 2014, 16, 20878–20886. DOI: 10.1039/C4CP03225J.
  • Jose, S. P.; Tiwary, C. S.; Kosolwattana, S.; Prasanth, R.; Machado, L. D.; Chandkiram, G.; Prasankumar, T.; Joyner, J.; Ozden, S.; Galvao, D. S.; et al. Enhanced Supercapacitor Performance of a 3D Architecture Tailored Using Atomically Thin rGO–MoS2 2D Sheets. RSC Adv. 2016, 96, 93384–93393. DOI: 10.1039/C6RA20960B.
  • Ma, L.; Ye, J.; Chen, W.; Chen, D.; Lee, J. Y. Gemini Surfactant Assisted Hydrothermal Synthesis of Nanotile-Like MoS2/Graphene Hybrid with Enhanced Lithium Storage Performance. Nano Energy 2014, 10, 144–152. DOI: 10.1016/j.nanoen.2014.09.006.
  • Jabbar, A.; Yasin, G.; Khan, W. Q.; Anwar, M. Y.; Korai, R. M.; Nizam, M. N.; Muhyodin, G. Electrochemical Deposition of Nickel Graphene Composite Coatings Effect of Deposition Temperature on Its Surface Morphology and Corrosion Resistance. RSC Adv. 2017, 7, 31100–31109. DOI: 10.1039/C6RA28755G.
  • Mishra, S. K.; Tripathi, S. N.; Choudhary, V.; Gupta, B. D. SPR Based Fibre Optic Ammonia Gas Sensor Utilizing Nanocomposite Film of PMMA/Reduced Graphene Oxide Prepared by in Situ Polymerization. Sensors Actuat. B: Chem. 2014, 199, 190–200. DOI: 10.1016/j.snb.2014.03.109.
  • Park, S.; Lee, K. S.; Bozoklu, G.; Cai, W.; Nguyen, S. B. T.; Ruoff, R. S. Graphene Oxide Papers Modified by Divalent Ions-Enhancing Mechanical Properties via Chemical Cross-Linking. ACS Nano. 2008, 2, 572–578. DOI: 10.1021/nn700349a.
  • Yang, A.; Li, J.; Zhang, C.; Zhang, W.; Ma, N. One-Step Amine Modification of Graphene Oxide to Get a Green Trifunctional Metal-Free Catalyst. Appl. Surf. Sci. 2015, 346, 443–450. DOI: 10.1016/j.apsusc.2015.04.033.
  • Xue, L. X.; Meng, T. T.; Zhao, Y.; Gao, L. H.; Wang, K. Z. Graphene Oxide Supported Mononuclear Aquaruthenium Complex Ultrathin Films with Enhanced Photoelectric Conversion and Electrocatalytic Water Oxidation. Electrochim. Acta 2015, 172, 77–87. DOI: 10.1016/j.electacta.2015.02.213.
  • Hellgren, N.; Haasch, R. T.; Schmidt, S.; Hultman, L.; Petrov, I. Interpretation of X-Ray Photoelectron Spectra of Carbon-Nitride Thin Films: New Insights from In Situ XPS. Carbon 2016, 108, 242–252. DOI: 10.1016/j.carbon.2016.07.017.
  • Mohtasebi, A.; Chowdhury, T.; Hsu, L. H. H.; Biesinger, M. C.; Kruse, P. Interfacial Charge Transfer between Phenyl-Capped Aniline Tetramer Films and Iron Oxide Surfaces. J. Phys. Chem. C 2016, 120, 29248–29263. DOI: 10.1021/acs.jpcc.6b09950.
  • Oh, Y. J.; Yoo, J. J.; Kim, Y. I.; Yoon, J. K.; Yoon, H. N.; Kim, J. H.; Park, S. B. Oxygen Functional Groups and Electrochemical Capacitive Behavior of Incompletely Reduced Graphene Oxides as a Thin-Film Electrode of Supercapacitor. Electrochim. Acta 2014, 116, 118–128. DOI: 10.1016/j.electacta.2013.11.040.
  • Wenmackers, S.; Christiaens, P.; Deferme, W.; Daenen, M.; Haenen, K.; Nesládek, M.; Wagner, P.; Vermeeren, V.; Michiels, L.; Van de Ven, M.; et al. Head-on Immobilization of DNA Fragments on CVD-Diamond Layers. MSF 2005, 492-493, 267–272.www.scientific.net/MSF.492-493.267.
  • Allen, J. B.; Larry, R. F. Electrochemical Methods: Fundamentals and Applications, 2nd ed.; John Wiley and Sons, New York, 2000.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.